Answer
Verified
498k+ views
Hint: In order to solve this question, we will solve the inequalities separately taking one term as constant in order to find out the number of positive integrals.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Complete step-by-step answer:
Given,
${x^2} + 9 < {\left( {x + 3} \right)^2} < 8x + 25$
Taking inequality number (1)
${x^2} + 9 < {\left( {x + 3} \right)^2}$
Or ${x^2} + 9 < {x^2} + 6x + 9$
Or ${x^2} + 9 - {x^2} - 6x - 9 < 0$
Or $ - 6x < 0$
Or $6x > 0$
Or $x > 0 - - - - - - \left( 1 \right)$
Taking inequality number (2)
Or ${x^2} + 6x + 9 < 8x + 25$
Or ${x^2} - 2x - 16 < 0$
Using ,$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $a = 1,{\text{ }}b = - 2,{\text{ c = - 16}}$
$x = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{2^2} - 4\left( 1 \right)} \left( { - 16} \right)}}{{2\left( 1 \right)}}$
Or $x = \dfrac{{2 \pm \sqrt {4 + 64} }}{2}$
Or $x = \dfrac{2}{2}\left( {1 \pm \sqrt {17} } \right)$
Or $x = 1 \pm \sqrt {17} $
Or $1 - \sqrt {17} < x < 1 + \sqrt {17} $
But it must be a positive integral.
Therefore,
$0 < x < 1 + \sqrt {17} $
So the integer values in our domain are
$1,2,3,4,5$
So, the option $\left( D \right)$ is correct.
Note: Whenever we face these types of questions the key concept is that we have to take the inequalities separately and only the positive values of $x$ is considerable as the number of integrals and in this way we will get our desired answer. Here, in this we did the same thing and thus we got our desired answer.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE