
The number of selections of n objects from 2n objects of which n are identical and the rest are different is:
\[
(A){\text{ }}{2^n} \\
(B){\text{ }}{2^{n - 1}} \\
(C){\text{ }}{2^n} - 1 \\
(D){\text{ }}{2^n} + 1 \\
\]
Answer
519.9k+ views
Hint:- Use the concept of combinations.
Let \[{S_1}\] be the set of n identical objects
And \[{S_2}\] be the set of the remaining n different objects.
So, now the number of ways to select r objects from \[{S_1}\] since all objects in \[{S_1}\] are identical will be 1.
Number of ways to select r objects from \[{S_2}\] will be \[{}^n{C_r}\].
So, as we know that there will be many cases to select n objects from 2n objects.
And, sum of number of ways of all n+1 case will be equal to total number of ways to select n objects
from 2n objects.
Case 1:
N objects from \[{S_2}\] and 0 object from \[{S_1}\]
Number of ways \[ = {}^n{C_n}\]
Case 2:
N-1 objects from \[{S_2}\] and 1 object from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 1}}*1 = {}^n{C_{n - 1}}\]
Case 3:
N-2 objects from \[{S_2}\] and 2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 2}}*1 = {}^n{C_{n - 2}}\]
Case 4:
N-3 objects from \[{S_2}\] and 3 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 3}}*1 = {}^n{C_{n - 3}}\]
.
.
.
.
.
Case n-1:
2 objects from \[{S_2}\] and n-2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_2}*1 = {}^n{C_2}\]
Case n:
1 object from \[{S_2}\] and n-1 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_1}*1 = {}^n{C_1}\]
Case n+1:
0 object from \[{S_2}\] and n objects from \[{S_1}\]
Number of ways \[ = {}^n{C_0}*1 = {}^n{C_0}\]
So, now total number of selections of n objects from 2n objects out of which n are identical
Will be the sum of all cases.
So, total number of ways \[ = {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0}\]
As we know that according to binomial theorem,
\[ \Rightarrow {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0} = {2^n}\]
So, total number of ways \[ = {2^n}\]
Hence the correct option will be A.
Note:- Whenever we came up with this type of problem then easiest and efficient way is to
Find different cases for selections of objects and then the total number of selections will be the sum of selections of all the cases.
Let \[{S_1}\] be the set of n identical objects
And \[{S_2}\] be the set of the remaining n different objects.
So, now the number of ways to select r objects from \[{S_1}\] since all objects in \[{S_1}\] are identical will be 1.
Number of ways to select r objects from \[{S_2}\] will be \[{}^n{C_r}\].
So, as we know that there will be many cases to select n objects from 2n objects.
And, sum of number of ways of all n+1 case will be equal to total number of ways to select n objects
from 2n objects.
Case 1:
N objects from \[{S_2}\] and 0 object from \[{S_1}\]
Number of ways \[ = {}^n{C_n}\]
Case 2:
N-1 objects from \[{S_2}\] and 1 object from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 1}}*1 = {}^n{C_{n - 1}}\]
Case 3:
N-2 objects from \[{S_2}\] and 2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 2}}*1 = {}^n{C_{n - 2}}\]
Case 4:
N-3 objects from \[{S_2}\] and 3 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 3}}*1 = {}^n{C_{n - 3}}\]
.
.
.
.
.
Case n-1:
2 objects from \[{S_2}\] and n-2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_2}*1 = {}^n{C_2}\]
Case n:
1 object from \[{S_2}\] and n-1 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_1}*1 = {}^n{C_1}\]
Case n+1:
0 object from \[{S_2}\] and n objects from \[{S_1}\]
Number of ways \[ = {}^n{C_0}*1 = {}^n{C_0}\]
So, now total number of selections of n objects from 2n objects out of which n are identical
Will be the sum of all cases.
So, total number of ways \[ = {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0}\]
As we know that according to binomial theorem,
\[ \Rightarrow {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0} = {2^n}\]
So, total number of ways \[ = {2^n}\]
Hence the correct option will be A.
Note:- Whenever we came up with this type of problem then easiest and efficient way is to
Find different cases for selections of objects and then the total number of selections will be the sum of selections of all the cases.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

A solution of a substance X is used for white washing class 11 chemistry CBSE

10 examples of friction in our daily life

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Can anyone list 10 advantages and disadvantages of friction
