The number of selections of n objects from 2n objects of which n are identical and the rest are different is:
\[
(A){\text{ }}{2^n} \\
(B){\text{ }}{2^{n - 1}} \\
(C){\text{ }}{2^n} - 1 \\
(D){\text{ }}{2^n} + 1 \\
\]
Answer
Verified
510.3k+ views
Hint:- Use the concept of combinations.
Let \[{S_1}\] be the set of n identical objects
And \[{S_2}\] be the set of the remaining n different objects.
So, now the number of ways to select r objects from \[{S_1}\] since all objects in \[{S_1}\] are identical will be 1.
Number of ways to select r objects from \[{S_2}\] will be \[{}^n{C_r}\].
So, as we know that there will be many cases to select n objects from 2n objects.
And, sum of number of ways of all n+1 case will be equal to total number of ways to select n objects
from 2n objects.
Case 1:
N objects from \[{S_2}\] and 0 object from \[{S_1}\]
Number of ways \[ = {}^n{C_n}\]
Case 2:
N-1 objects from \[{S_2}\] and 1 object from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 1}}*1 = {}^n{C_{n - 1}}\]
Case 3:
N-2 objects from \[{S_2}\] and 2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 2}}*1 = {}^n{C_{n - 2}}\]
Case 4:
N-3 objects from \[{S_2}\] and 3 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 3}}*1 = {}^n{C_{n - 3}}\]
.
.
.
.
.
Case n-1:
2 objects from \[{S_2}\] and n-2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_2}*1 = {}^n{C_2}\]
Case n:
1 object from \[{S_2}\] and n-1 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_1}*1 = {}^n{C_1}\]
Case n+1:
0 object from \[{S_2}\] and n objects from \[{S_1}\]
Number of ways \[ = {}^n{C_0}*1 = {}^n{C_0}\]
So, now total number of selections of n objects from 2n objects out of which n are identical
Will be the sum of all cases.
So, total number of ways \[ = {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0}\]
As we know that according to binomial theorem,
\[ \Rightarrow {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0} = {2^n}\]
So, total number of ways \[ = {2^n}\]
Hence the correct option will be A.
Note:- Whenever we came up with this type of problem then easiest and efficient way is to
Find different cases for selections of objects and then the total number of selections will be the sum of selections of all the cases.
Let \[{S_1}\] be the set of n identical objects
And \[{S_2}\] be the set of the remaining n different objects.
So, now the number of ways to select r objects from \[{S_1}\] since all objects in \[{S_1}\] are identical will be 1.
Number of ways to select r objects from \[{S_2}\] will be \[{}^n{C_r}\].
So, as we know that there will be many cases to select n objects from 2n objects.
And, sum of number of ways of all n+1 case will be equal to total number of ways to select n objects
from 2n objects.
Case 1:
N objects from \[{S_2}\] and 0 object from \[{S_1}\]
Number of ways \[ = {}^n{C_n}\]
Case 2:
N-1 objects from \[{S_2}\] and 1 object from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 1}}*1 = {}^n{C_{n - 1}}\]
Case 3:
N-2 objects from \[{S_2}\] and 2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 2}}*1 = {}^n{C_{n - 2}}\]
Case 4:
N-3 objects from \[{S_2}\] and 3 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_{n - 3}}*1 = {}^n{C_{n - 3}}\]
.
.
.
.
.
Case n-1:
2 objects from \[{S_2}\] and n-2 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_2}*1 = {}^n{C_2}\]
Case n:
1 object from \[{S_2}\] and n-1 objects from \[{S_1}\]
Number of ways \[ = {}^n{C_1}*1 = {}^n{C_1}\]
Case n+1:
0 object from \[{S_2}\] and n objects from \[{S_1}\]
Number of ways \[ = {}^n{C_0}*1 = {}^n{C_0}\]
So, now total number of selections of n objects from 2n objects out of which n are identical
Will be the sum of all cases.
So, total number of ways \[ = {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0}\]
As we know that according to binomial theorem,
\[ \Rightarrow {}^n{C_n} + {}^n{C_{n - 1}} + {}^n{C_{n - 2}} + {}^n{C_{n - 3}} + ..... + {}^n{C_2} + {}^n{C_1} + {}^n{C_0} = {2^n}\]
So, total number of ways \[ = {2^n}\]
Hence the correct option will be A.
Note:- Whenever we came up with this type of problem then easiest and efficient way is to
Find different cases for selections of objects and then the total number of selections will be the sum of selections of all the cases.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE