The numerator of a fraction is $4$less than the denominator. If the numerator is decreased by $2$ and the denominator is increased by $1$, then the denominator is eight times the numerator. The fraction is also written as $\dfrac{m}{{14}}$. What is the value of $m$?
Answer
Verified
506.7k+ views
Hint: First make linear equations from the given information and then solve those equations in order to find the value of two numbers.
Let the numerator be $x$and denominator be$y$.
According to the question:
\[
{\text{Case1: }}x = y - 4{\text{ }} \ldots \ldots \left( 1 \right) \\
{\text{Case2: }}8\left( {x - 2} \right) = y + 1 \\
\Rightarrow 8x - 16 = y + 1 \\
\Rightarrow 8x - y = 17{\text{ }} \ldots \ldots \left( 2 \right) \\
\]
Put the value of $x$from equation $\left( 1 \right)$in equation $\left( 2 \right)$and solve for$y$, we get:
\[
\Rightarrow 8\left( {y - 4} \right) - y = 17 \\
\Rightarrow 8y - 32 - y = 17 \\
\Rightarrow 7y = 49 \\
\Rightarrow y = 7 \\
\]
Now, put the value of$y$in equation$\left( 1 \right)$and solve for$x$, we get:
\[
\Rightarrow x = y - 4 \\
\Rightarrow x = 7 - 4 \\
\Rightarrow x = 3 \\
\]
Hence, the fraction \[\dfrac{x}{y}\]is equal to \[\dfrac{3}{7}.\]
Now, the given fraction is of the form $\dfrac{m}{{14}}$. So, we will also convert our fraction of the same form.
Therefore, multiplying and dividing the fraction by\[2\], we get:
\[
\dfrac{x}{y}{\text{ = }}\dfrac{3}{7} \times \dfrac{2}{2} \\
\dfrac{x}{y} = \dfrac{6}{{14}}{\text{ }} \ldots \ldots \left( 3 \right) \\
\]
Now, the equation$\left( 3 \right)$is of the form $\dfrac{m}{{14}}$. By comparison, we get:
\[m = 6\]
Note- Whenever you see a problem like this, always try to identify the number of variables and try to make that many equations. Also, in order to compare two fractions, always make their denominator or numerator equal.
Let the numerator be $x$and denominator be$y$.
According to the question:
\[
{\text{Case1: }}x = y - 4{\text{ }} \ldots \ldots \left( 1 \right) \\
{\text{Case2: }}8\left( {x - 2} \right) = y + 1 \\
\Rightarrow 8x - 16 = y + 1 \\
\Rightarrow 8x - y = 17{\text{ }} \ldots \ldots \left( 2 \right) \\
\]
Put the value of $x$from equation $\left( 1 \right)$in equation $\left( 2 \right)$and solve for$y$, we get:
\[
\Rightarrow 8\left( {y - 4} \right) - y = 17 \\
\Rightarrow 8y - 32 - y = 17 \\
\Rightarrow 7y = 49 \\
\Rightarrow y = 7 \\
\]
Now, put the value of$y$in equation$\left( 1 \right)$and solve for$x$, we get:
\[
\Rightarrow x = y - 4 \\
\Rightarrow x = 7 - 4 \\
\Rightarrow x = 3 \\
\]
Hence, the fraction \[\dfrac{x}{y}\]is equal to \[\dfrac{3}{7}.\]
Now, the given fraction is of the form $\dfrac{m}{{14}}$. So, we will also convert our fraction of the same form.
Therefore, multiplying and dividing the fraction by\[2\], we get:
\[
\dfrac{x}{y}{\text{ = }}\dfrac{3}{7} \times \dfrac{2}{2} \\
\dfrac{x}{y} = \dfrac{6}{{14}}{\text{ }} \ldots \ldots \left( 3 \right) \\
\]
Now, the equation$\left( 3 \right)$is of the form $\dfrac{m}{{14}}$. By comparison, we get:
\[m = 6\]
Note- Whenever you see a problem like this, always try to identify the number of variables and try to make that many equations. Also, in order to compare two fractions, always make their denominator or numerator equal.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
Advantages and disadvantages of science
What is BLO What is the full form of BLO class 8 social science CBSE
Write a letter to the Municipal Commissioner to inform class 8 english CBSE
List some examples of Rabi and Kharif crops class 8 biology CBSE