Answer
Verified
469.8k+ views
Hint:
The number of atoms in one mole of any substance is equal to Avogadro’s Number i.e. \[6.02 \times {10^{23}}\]atoms per mole
Formula used:\[N = {N_A} \times n\]
Complete step by step answer:
-We can quantify matter on the basis of its weight into various forms of measures to quantify the elementary particles present within the given sample of matter.
-A mole represents a very large number of units i.e. \[6.02 \times {10^{23}}\] units. Now you may be wondering why mole is considered as a mode of measurement of the amount of matter. The simple explanation to this is that experimentally, it has been found out that 1mol of any substance contains the same number of molecules of the given sample of matter. One mole of a substance is equivalent to the sample of the given substance if its weight is equal to the molecular or atomic weight of the substance. The number of molecules in one mole of any substance is equal to Avogadro’s Number i.e. atoms \[6.02 \times {10^{23}}\]molecules per mole.
-The relation between the number of molecules in a given sample and the number of moles of the same sample is directly proportional. Also, by simple mathematics, we can understand that if 1 mol of a substance contains \[6.02 \times {10^{23}}\]molecules, then ‘n’ mols of the substance will contain \[n \times 6.02 \times {10^{23}}\]molecules.
-If we write Avogadro's Number as \[{N_A}\], then we can say that the number of molecules present in ‘n’ moles of the substance is \[{N_A} \times n\].
Hence, the final representation of these relations can be shown as:
\[N = {N_A} \times n\]
Dividing both sides by ‘n’
\[\therefore \dfrac{N}{n} = \dfrac{{{N_A} \times n}}{n}\]
\[\therefore \dfrac{N}{n} = {N_A}\]
\[\therefore \dfrac{N}{n} = 6.022 \times {10^{23}}\]
Hence, Option B is the correct answer.
Note:
The value of N/n is universal in nature. This means that the variation in either the elemental gas or the number of moles of it present would not be affected. Hence, N/n is a constant value and is the same for all elements.
The number of atoms in one mole of any substance is equal to Avogadro’s Number i.e. \[6.02 \times {10^{23}}\]atoms per mole
Formula used:\[N = {N_A} \times n\]
Complete step by step answer:
-We can quantify matter on the basis of its weight into various forms of measures to quantify the elementary particles present within the given sample of matter.
-A mole represents a very large number of units i.e. \[6.02 \times {10^{23}}\] units. Now you may be wondering why mole is considered as a mode of measurement of the amount of matter. The simple explanation to this is that experimentally, it has been found out that 1mol of any substance contains the same number of molecules of the given sample of matter. One mole of a substance is equivalent to the sample of the given substance if its weight is equal to the molecular or atomic weight of the substance. The number of molecules in one mole of any substance is equal to Avogadro’s Number i.e. atoms \[6.02 \times {10^{23}}\]molecules per mole.
-The relation between the number of molecules in a given sample and the number of moles of the same sample is directly proportional. Also, by simple mathematics, we can understand that if 1 mol of a substance contains \[6.02 \times {10^{23}}\]molecules, then ‘n’ mols of the substance will contain \[n \times 6.02 \times {10^{23}}\]molecules.
-If we write Avogadro's Number as \[{N_A}\], then we can say that the number of molecules present in ‘n’ moles of the substance is \[{N_A} \times n\].
Hence, the final representation of these relations can be shown as:
\[N = {N_A} \times n\]
Dividing both sides by ‘n’
\[\therefore \dfrac{N}{n} = \dfrac{{{N_A} \times n}}{n}\]
\[\therefore \dfrac{N}{n} = {N_A}\]
\[\therefore \dfrac{N}{n} = 6.022 \times {10^{23}}\]
Hence, Option B is the correct answer.
Note:
The value of N/n is universal in nature. This means that the variation in either the elemental gas or the number of moles of it present would not be affected. Hence, N/n is a constant value and is the same for all elements.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE