Answer
Verified
499.5k+ views
Hint: In this question first assume any variable for the number of winners and assume another variable for the rest of the candidates, then the sum of these variables are the total number of participants, use this concept to reach the solution of the question.
Let the number of winners be x.
And the rest of the candidates be y.
Now it is given that the total participants is 63.
$ \Rightarrow x + y = 63.................\left( 1 \right)$
Now according to the question winners get a prize of Rs. 100.
And the rest of the candidates get a prize of Rs. 25.
Total prize money is Rs. 3000
Now, convert this information into linear equation we have,
$ \Rightarrow 100x + 25y = 3000$
Now, divide by 25 in above equation we have,
$ \Rightarrow 4x + y = 120...............\left( 2 \right)$
From equation (1)
$y = 63 - x$
Substitute this value in equation (2) we have,
$
\Rightarrow 4x + 63 - x = 120 \\
\Rightarrow 3x = 120 - 63 = 57 \\
\Rightarrow x = \dfrac{{57}}{3} = 19 \\
$
So, the total number of winners in an essay competition is 19.
Note: Whenever we face such types of questions first assume the variables for winners and rest of the participants as above then convert the given information into linear equations as above then solve these two equation using substitution method as above or we can use elimination method by directly subtracting equation (1) from equation (2), we will get the required number of winners in an essay competition.
Let the number of winners be x.
And the rest of the candidates be y.
Now it is given that the total participants is 63.
$ \Rightarrow x + y = 63.................\left( 1 \right)$
Now according to the question winners get a prize of Rs. 100.
And the rest of the candidates get a prize of Rs. 25.
Total prize money is Rs. 3000
Now, convert this information into linear equation we have,
$ \Rightarrow 100x + 25y = 3000$
Now, divide by 25 in above equation we have,
$ \Rightarrow 4x + y = 120...............\left( 2 \right)$
From equation (1)
$y = 63 - x$
Substitute this value in equation (2) we have,
$
\Rightarrow 4x + 63 - x = 120 \\
\Rightarrow 3x = 120 - 63 = 57 \\
\Rightarrow x = \dfrac{{57}}{3} = 19 \\
$
So, the total number of winners in an essay competition is 19.
Note: Whenever we face such types of questions first assume the variables for winners and rest of the participants as above then convert the given information into linear equations as above then solve these two equation using substitution method as above or we can use elimination method by directly subtracting equation (1) from equation (2), we will get the required number of winners in an essay competition.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE