Answer
Verified
496.8k+ views
Hint: The normal vector of the plane ax+by+cz = d is (a,b,c). So choose the point P(x,y,z) PA is parallel to the normal vector. P also satisfies the plane equation. This will give you a system of three equations. Solve the system using any method. This will give the coordinates of the point P.
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Complete step-by-step answer:
We know that the normal vector of the plane ax+by+cz = d is (a,b,c)
Here a = 3, b = -1, c = 4 and d = 0.
Hence the normal vector(N) of the plane is \[3\widehat{i}\text{ - }\widehat{j}\text{ + }4\widehat{k}\]
Let P(x,y,z) be the project of A on the plane 3x-y+4z=0
Since P lies on the plane, we have
3x-y+4z = 0 (i)
Also \[\overrightarrow{AP}=\left( x-1 \right)\widehat{i}\text{ +}\left( y-2 \right)\widehat{j}\text{ + }\left( z-3 \right)\widehat{k}\]
Since $AP\parallel N$we have
$\begin{align}
& \dfrac{x-1}{3}=\dfrac{y-2}{-1}=\dfrac{z-3}{4}=t\text{ (say)} \\
& \Rightarrow x=3t+1,y=2-t,z=4t+3 \\
\end{align}$
Now we have
Put the value of x,y and z in equation (i) we get
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
\end{align}\]
Subtracting 13 from both sides, we get
$\begin{align}
& 26t+13-13=0-13 \\
& \Rightarrow 26t=-13 \\
\end{align}$
Dividing both sides by 26, we get
$\begin{align}
& \dfrac{26t}{26}=\dfrac{-13}{26} \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}$
Hence we have
$\begin{align}
& x=3t+1=\dfrac{-3}{2}+1=\dfrac{-1}{2} \\
& y=2-t=2-\left( -\dfrac{1}{2} \right)=2+\dfrac{1}{2}=\dfrac{5}{2} \\
& z=4t+3=4\left( -\dfrac{1}{2} \right)+3=-2+3=1 \\
\end{align}$
Hence $P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right)$ is the point of the orthogonal projection of A.
Note: Alternatively we have, the equation of the line perpendicular to the plane passing through A in parametric form is $x=3t+1,y=-t+2,z=4t+3$ where t is the parameter.
The line intersects the plane at point P(t)
Then we have
\[\begin{align}
& 3\left( 3t+1 \right)-\left( 2-t \right)+4\left( 4t+3 \right)=0 \\
& \Rightarrow 9t+3-2+t+16t+12=0 \\
& \Rightarrow 26t+13=0 \\
& \Rightarrow 26t=-13 \\
& \Rightarrow t=-\dfrac{1}{2} \\
\end{align}\]
Hence
$\begin{align}
& P\equiv \left( 3\times \dfrac{-1}{2}+1,-\dfrac{-1}{2}+2,4\times \dfrac{-1}{2}+3 \right) \\
& \Rightarrow P\equiv \left( \dfrac{-1}{2},\dfrac{5}{2},1 \right) \\
\end{align}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE