
The oxidation states of Mn in and respectively are:
A. +6, +7
B. +6, +6
C. +7, +7
D. +7, +6
Answer
515.1k+ views
Hint: We should know that oxidation state is a number that is assigned to an element in a chemical combination. This number represents the number of electrons that an atom can gain, lose, or share when chemically bonding with an atom of another element.
Step by step answer:
We should know that the transfer of electrons is described by the oxidation state of the molecule. We use oxidation state to determine the changes in redox reactions and it is numerically similar to valence electrons.
To find the oxidation state of a compound we should know some rules. These rules are as follows:
RULE 1: Any individual atom un-combined with other elements has the oxidation state of 0 (zero). For example: If we take Ag only, its oxidation state will be 0. The oxidation state for O (oxygen) or is 0 as long as it is un-combined with any other element.
RULE 2: We should know that the sum of the oxidation state of all atoms in any given species is equal to the net charge on that species.
a.) In neutral species, the total sum of the oxidation state of all atoms is 0. Example, sum for NaCl is zero because Na=+1 and Cl= -1
b.) In ions, the total sum of the oxidation state is the charge of the ion. Example: (Calcium) is = +2. In (Chromate ion), the total sum is -2.
Now, we will find the oxidation state of Mn in . So, we should let the oxidation state of Mn be x. So, oxidation state will be:
As we know, the oxidation state of O is -2 and that of H is +1.
So, from the above calculation we find out the oxidation state of and .
Oxidation state of is +6. And the oxidation state of is +7. So, option C is correct.
Note: We should not confuse formal charge with oxidation states. We should know that oxidation state is commonly used to determine the changes in redox reactions and is numerically similar to valence electrons, but different from formal charge. Formal charge determines the arrangement of atoms and the likelihood of the molecule existing.
Step by step answer:
We should know that the transfer of electrons is described by the oxidation state of the molecule. We use oxidation state to determine the changes in redox reactions and it is numerically similar to valence electrons.
To find the oxidation state of a compound we should know some rules. These rules are as follows:
RULE 1: Any individual atom un-combined with other elements has the oxidation state of 0 (zero). For example: If we take Ag only, its oxidation state will be 0. The oxidation state for O (oxygen) or
RULE 2: We should know that the sum of the oxidation state of all atoms in any given species is equal to the net charge on that species.
a.) In neutral species, the total sum of the oxidation state of all atoms is 0. Example, sum for NaCl is zero because Na=+1 and Cl= -1
b.) In ions, the total sum of the oxidation state is the charge of the ion. Example:
Now, we will find the oxidation state of Mn in
As we know, the oxidation state of O is -2 and that of H is +1.
So, from the above calculation we find out the oxidation state of
Oxidation state of
Note: We should not confuse formal charge with oxidation states. We should know that oxidation state is commonly used to determine the changes in redox reactions and is numerically similar to valence electrons, but different from formal charge. Formal charge determines the arrangement of atoms and the likelihood of the molecule existing.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
