The packing efficiency of the face centred cubic (fcc), body-centred cubic (bcc) and simple primitive cubic (pc) lattices follows the order:
A. fcc > bcc > pc
B. bcc > fcc > pc
C. pc > bcc > fcc
D. bcc > pc > fcc
Answer
Verified
496.2k+ views
Hint: We know that each cube has 8 corners, 12 edges, 6 faces, 12 face diagonals and 8 body diagonals. Keeping this information in mind we need to proceed for the comparison.
Step by step answer:
The percentage efficiency of a simple cubic unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \text{2r} \right)}^{\text{3}}}\text{= 8}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 8 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{8}}\text{ = 1}\]
Volume of the atom \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]\[\text{= }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
\[\therefore \]packing fraction \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{= }\dfrac{\left( \text{4/3} \right)\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{8}{{\text{r}}^{\text{3}}}}\text{= 0}\text{.5233}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 0}\text{.5233 }\!\!\times\!\!\text{ 100 = 52}\text{.33 }\!\!%\!\!\text{ }\]
The percentage efficiency of a body-centred unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a = }\dfrac{\text{4}}{\sqrt{\text{3}}}\text{ }\!\!\times\!\!\text{ r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \dfrac{\text{4}}{\sqrt{\text{3}}} \right)}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{= }\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}\text{ }{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 2}\]
Volume of two atoms \[\text{= 2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
Therefore, packing fraction (3D) \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{=}\dfrac{\text{2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.68}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 68 }\!\!%\!\!\text{ }\]
The percentage efficiency of a face-centred cubic unit cell:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a=2}\sqrt{\text{2}}\times \text{r}\]
Total volume of the unit cell \[\text{=}{{\text{a}}^{\text{3}}}\text{=(2}\sqrt{\text{2}}{{\text{)}}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{=16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 4}\]
Volume of four atoms \[\text{= 4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
(This is the occupied volume)
Therefore, packing fraction (3D) \[\text{=}\dfrac{\text{Occupied volume }}{\text{ Total volume}}\]
\[\text{=}\dfrac{\text{4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.7401}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 74}\text{.01 }\!\!%\!\!\text{ }\]
Hence we can see that the packing efficiency goes in to order:
fcc > bcc > pc
So Option A is the correct answer.
Note:
Atomic radius of simple cubic unit cell is: \[\text{r = }\dfrac{\text{a}}{\text{2}}\]
Atomic radius of body-centred unit cell is: \[\text{r = }\dfrac{\sqrt{\text{3}}}{\text{4 a}}\]
Atomic radius of face-centred unit cell is: \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]
Step by step answer:
The percentage efficiency of a simple cubic unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \text{2r} \right)}^{\text{3}}}\text{= 8}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 8 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{8}}\text{ = 1}\]
Volume of the atom \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]\[\text{= }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
\[\therefore \]packing fraction \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{= }\dfrac{\left( \text{4/3} \right)\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{8}{{\text{r}}^{\text{3}}}}\text{= 0}\text{.5233}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 0}\text{.5233 }\!\!\times\!\!\text{ 100 = 52}\text{.33 }\!\!%\!\!\text{ }\]
The percentage efficiency of a body-centred unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a = }\dfrac{\text{4}}{\sqrt{\text{3}}}\text{ }\!\!\times\!\!\text{ r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \dfrac{\text{4}}{\sqrt{\text{3}}} \right)}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{= }\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}\text{ }{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 2}\]
Volume of two atoms \[\text{= 2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
Therefore, packing fraction (3D) \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{=}\dfrac{\text{2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.68}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 68 }\!\!%\!\!\text{ }\]
The percentage efficiency of a face-centred cubic unit cell:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a=2}\sqrt{\text{2}}\times \text{r}\]
Total volume of the unit cell \[\text{=}{{\text{a}}^{\text{3}}}\text{=(2}\sqrt{\text{2}}{{\text{)}}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{=16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 4}\]
Volume of four atoms \[\text{= 4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
(This is the occupied volume)
Therefore, packing fraction (3D) \[\text{=}\dfrac{\text{Occupied volume }}{\text{ Total volume}}\]
\[\text{=}\dfrac{\text{4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.7401}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 74}\text{.01 }\!\!%\!\!\text{ }\]
Hence we can see that the packing efficiency goes in to order:
fcc > bcc > pc
So Option A is the correct answer.
Note:
Atomic radius of simple cubic unit cell is: \[\text{r = }\dfrac{\text{a}}{\text{2}}\]
Atomic radius of body-centred unit cell is: \[\text{r = }\dfrac{\sqrt{\text{3}}}{\text{4 a}}\]
Atomic radius of face-centred unit cell is: \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE