
The pair of equations \[{3^{x + y}} = 81\], \[{81^{x - y}} = 3\] has
A.No solution
B.The solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
C.The solution \[x = 2\], \[y = 2\]
D.The solution \[x = 2\dfrac{1}{8}\],\[y = 1\dfrac{7}{8}\]
Answer
483.9k+ views
Hint: First we will first rewrite the number 81 into powers of 3 in the equation and then use the power rule that if \[{a^x} = {a^y}\], then \[x = y\]. Then we will simplify the equations to find the value of \[x\] and \[y\].
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
