
The parallelogram ABCD shows the points P and Q dividing each of the line AD and DC in the ratio 1:4. What is the ratio in which R divides DB? What is the ratio in which R divides PQ?

Answer
452.4k+ views
Hint: First construct the line AQ parallel to PQ. Using similar triangles DPQ and DAQ. There are many types of theorems like cevian theorem to get the ratio of the DB and PQ which pass through R.
Complete step by step answer:
Let $\left| {ABC} \right|$ denote area of $\vartriangle ABC$
Let $\left| {ABCD} \right| = 10x$,
$ \Rightarrow \left| {ABC} \right| = \left| {ADC} \right| = \left| {ABD} \right| = \left| {CBD} \right| = \dfrac{{10x}}{2} = 5x$
Given, $DQ:QC = 1:4$,
$ \Rightarrow \left| {ADQ} \right|:\left| {AQC} \right| = \left| {BDQ} \right|\left| {BQC} \right| = 1:4$,
$ \Rightarrow \left| {ABP} \right| = x,\left| {PBD} \right| = 4x$,
And, $\left| {AQP} \right| = \dfrac{1}{5}x,\left| {PQD} \right| = \dfrac{4}{5}x$
$\left| {PDQB} \right| = \left| {PBD} \right| + \left| {BDQ} \right| = 4x + x = 5x$
$ \Rightarrow \left| {PQB} \right| = \left| {PDQB} \right| - \left| {PDQ} \right| = 5x - \dfrac{4}{5}x = \dfrac{{21}}{5}x$
$ \Rightarrow DR:RB = \left| {PDQ} \right|:\left| {PQB} \right| = \dfrac{4}{5}x:\dfrac{{21}}{5}x = 4:21$
$\therefore PR:RQ = \left| {BPD} \right|:\left| {BDQ} \right| = 4x:x = 4:1$
Note: One may note that there are certain quadrilaterals whose diagonals bisect each other but here we have assumed the quadrilateral as a parallelogram because this is the basic property of a parallelogram.
Complete step by step answer:
Let $\left| {ABC} \right|$ denote area of $\vartriangle ABC$
Let $\left| {ABCD} \right| = 10x$,
$ \Rightarrow \left| {ABC} \right| = \left| {ADC} \right| = \left| {ABD} \right| = \left| {CBD} \right| = \dfrac{{10x}}{2} = 5x$
Given, $DQ:QC = 1:4$,
$ \Rightarrow \left| {ADQ} \right|:\left| {AQC} \right| = \left| {BDQ} \right|\left| {BQC} \right| = 1:4$,
$ \Rightarrow \left| {ABP} \right| = x,\left| {PBD} \right| = 4x$,
And, $\left| {AQP} \right| = \dfrac{1}{5}x,\left| {PQD} \right| = \dfrac{4}{5}x$
$\left| {PDQB} \right| = \left| {PBD} \right| + \left| {BDQ} \right| = 4x + x = 5x$
$ \Rightarrow \left| {PQB} \right| = \left| {PDQB} \right| - \left| {PDQ} \right| = 5x - \dfrac{4}{5}x = \dfrac{{21}}{5}x$
$ \Rightarrow DR:RB = \left| {PDQ} \right|:\left| {PQB} \right| = \dfrac{4}{5}x:\dfrac{{21}}{5}x = 4:21$
$\therefore PR:RQ = \left| {BPD} \right|:\left| {BDQ} \right| = 4x:x = 4:1$
Note: One may note that there are certain quadrilaterals whose diagonals bisect each other but here we have assumed the quadrilateral as a parallelogram because this is the basic property of a parallelogram.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Explain the Treaty of Vienna of 1815 class 10 social science CBSE

The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE

Name the place where the Indian National Congress session class 10 social science CBSE

Name the place where Indian National Congress session class 10 social science CBSE

Name the largest artificial lake that was built in class 10 social science CBSE

Distinguish between coming together federations and class 10 social science CBSE
