Answer
Verified
471.3k+ views
Hint: This problem can be solved by writing the mathematical formula for $g$ by using the given formula for $T$ and writing the percentage error in $g$ in terms of the percentage error in $l$ and the percentage error in $T$.
Complete step-by-step answer:
Let us first write the equation for the percentage error in a variable $z$ that is written in terms of two other variables $x$ and $y$. Now, if
$z={{x}^{m}}{{y}^{n}}$
where $m,n$ are real numbers,
The percentage error $\dfrac{\Delta z}{z}\left( \text{in }\!\!\%\!\!\text{ } \right)$ in $z$ is given by
$\dfrac{\Delta z}{z}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| m\dfrac{\Delta x}{x}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| n\dfrac{\Delta y}{y}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|$ --(1)
Where $\dfrac{\Delta x}{x}\left( \text{in }\!\!\%\!\!\text{ } \right),\dfrac{\Delta y}{y}\left( \text{in }\!\!\%\!\!\text{ } \right)$ are the percentage errors in $x,y$ respectively.
Now, let us analyze the question.
The time period of the pendulum is $T=0.5s$.
Now the time required for $100$ oscillations is $t=T\times 100=0.5\times 100=50s$
Now, since the resolution for the stop watch is $1s$, the error $\Delta t$ in $t$ is $\Delta t=1s$.
Now, $T=\dfrac{t}{100}$
$\therefore \Delta T=\dfrac{\Delta t}{100}=\dfrac{1}{100}=0.01s$
$\therefore \dfrac{\Delta T}{T}\left( \text{in }\!\!\%\!\!\text{ } \right)=\dfrac{0.01}{0.5}\times 100=0.02\times 100=2\%$ --(2)
Now, the measured length of the pendulum is $l=10cm=0.1m$ $\left( \because 10cm=0.1m \right)$
Now, the error $\Delta l$ in the measured length is the accuracy of the scale, that is,
$\Delta l=1mm=0.001m$ $\left( \because 1mm=0.001m \right)$
$\therefore \dfrac{\Delta l}{l}\left( \text{in }\!\!\%\!\!\text{ } \right)=\dfrac{0.001}{0.1}\times 100=1\%$ --(3)
Now, it is given that the time period $T$, length $l$ and acceleration due to gravity $g$ for a simple pendulum are related as
$T=2\pi \sqrt{\dfrac{l}{g}}$
Squaring both sides we get
${{T}^{2}}={{\left( 2\pi \sqrt{\dfrac{l}{g}} \right)}^{2}}=4{{\pi }^{2}}\dfrac{l}{g}$
$\therefore g=4{{\pi }^{2}}\dfrac{l}{{{T}^{2}}}$ --(4)
Using (1) for (4), we get
$\dfrac{\Delta g}{g}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| \dfrac{\Delta 4{{\pi }^{2}}}{4{{\pi }^{2}}}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| \dfrac{\Delta l}{l}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| -2\dfrac{\Delta T}{T}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|$
Putting the values in the above equation we get
$\dfrac{\Delta g}{g}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| 0 \right|+\left| 1 \right|+\left| -2\left( 2 \right) \right|=0+1+4=5\%$ $\left( \because \Delta 4{{\pi }^{2}}=0,\text{ since it is a constant and does not change} \right)$
Therefore, we have got the required percentage error in the determination of $g$ as $5\%$.
Note: Students must note that in formula (1), it is imperative that they take the absolute values for the percentage errors of the physical quantities as a function of whom our required physical quantity is written. This is because the error can be positive or negative but we have to write the error in such a way so that all the errors add up and give the maximum relative or percentage errors.
Complete step-by-step answer:
Let us first write the equation for the percentage error in a variable $z$ that is written in terms of two other variables $x$ and $y$. Now, if
$z={{x}^{m}}{{y}^{n}}$
where $m,n$ are real numbers,
The percentage error $\dfrac{\Delta z}{z}\left( \text{in }\!\!\%\!\!\text{ } \right)$ in $z$ is given by
$\dfrac{\Delta z}{z}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| m\dfrac{\Delta x}{x}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| n\dfrac{\Delta y}{y}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|$ --(1)
Where $\dfrac{\Delta x}{x}\left( \text{in }\!\!\%\!\!\text{ } \right),\dfrac{\Delta y}{y}\left( \text{in }\!\!\%\!\!\text{ } \right)$ are the percentage errors in $x,y$ respectively.
Now, let us analyze the question.
The time period of the pendulum is $T=0.5s$.
Now the time required for $100$ oscillations is $t=T\times 100=0.5\times 100=50s$
Now, since the resolution for the stop watch is $1s$, the error $\Delta t$ in $t$ is $\Delta t=1s$.
Now, $T=\dfrac{t}{100}$
$\therefore \Delta T=\dfrac{\Delta t}{100}=\dfrac{1}{100}=0.01s$
$\therefore \dfrac{\Delta T}{T}\left( \text{in }\!\!\%\!\!\text{ } \right)=\dfrac{0.01}{0.5}\times 100=0.02\times 100=2\%$ --(2)
Now, the measured length of the pendulum is $l=10cm=0.1m$ $\left( \because 10cm=0.1m \right)$
Now, the error $\Delta l$ in the measured length is the accuracy of the scale, that is,
$\Delta l=1mm=0.001m$ $\left( \because 1mm=0.001m \right)$
$\therefore \dfrac{\Delta l}{l}\left( \text{in }\!\!\%\!\!\text{ } \right)=\dfrac{0.001}{0.1}\times 100=1\%$ --(3)
Now, it is given that the time period $T$, length $l$ and acceleration due to gravity $g$ for a simple pendulum are related as
$T=2\pi \sqrt{\dfrac{l}{g}}$
Squaring both sides we get
${{T}^{2}}={{\left( 2\pi \sqrt{\dfrac{l}{g}} \right)}^{2}}=4{{\pi }^{2}}\dfrac{l}{g}$
$\therefore g=4{{\pi }^{2}}\dfrac{l}{{{T}^{2}}}$ --(4)
Using (1) for (4), we get
$\dfrac{\Delta g}{g}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| \dfrac{\Delta 4{{\pi }^{2}}}{4{{\pi }^{2}}}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| \dfrac{\Delta l}{l}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|+\left| -2\dfrac{\Delta T}{T}\left( \text{in }\!\!\%\!\!\text{ } \right) \right|$
Putting the values in the above equation we get
$\dfrac{\Delta g}{g}\left( \text{in }\!\!\%\!\!\text{ } \right)=\left| 0 \right|+\left| 1 \right|+\left| -2\left( 2 \right) \right|=0+1+4=5\%$ $\left( \because \Delta 4{{\pi }^{2}}=0,\text{ since it is a constant and does not change} \right)$
Therefore, we have got the required percentage error in the determination of $g$ as $5\%$.
Note: Students must note that in formula (1), it is imperative that they take the absolute values for the percentage errors of the physical quantities as a function of whom our required physical quantity is written. This is because the error can be positive or negative but we have to write the error in such a way so that all the errors add up and give the maximum relative or percentage errors.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE