Answer
Verified
368.7k+ views
Hint: First we need to draw a free body diagram representing all the parameters required to solve this problem. Now by taking the rocket as the frame of reference we can find the effective acceleration acting on the pendulum which is acting downward. Now applying the time period formula we can find the solution to this problem.
Complete step by step answer:
As per the problem we know that a simple pendulum of length L suspended from the roof of a rocket accelerates upwards with a constant acceleration (g).
Now we need to find the time period of the simple pendulum.
Here in this problem the rocket accelerates with a constant acceleration of g in the upward direction. From the figure we can say that a rocket is an acceleration frame of reference. As we know that Newton's law is not applicable in the acceleration frame of reference hence if we want to use Newton's law of motion in the acceleration frame of reference then we have to use a pseudo acceleration that is acting on the pendulum.
Since the rocket is accelerating in an upward direction same as that of the acceleration due to gravity and the pendulum bob experiences downward pseudo acceleration which is also equal to g.
Therefore the effective acceleration acting on the pendulum is equals to,
${a_{eff}} = {a_r} - {a_s}$
Where,
${a_{eff}}$ is the effective acceleration of the pendulum.
${a_r}$ is the acceleration due to the frame of reference that is g.
And ${a_s}$ is the pseudo acceleration that is –g.
Now putting the respective values we will get,
${a_{eff}} = g - \left( { - g} \right) = 2g$
We know the periodic time of a simple pendulum as,
$T = 2\pi \sqrt {\dfrac{L}{{{a_{eff}}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{{2g}}} $
Therefore the correct option is (C).
Note: Remember that here the pseudo force acting on the pendulum is opposite to the direction of acceleration of the frame of reference and the pseudo force or acceleration is always equal to the magnitude of the reference acceleration or force. Note that pseudo force or acceleration is an apparent force that acts on all the masses whose motion is described using a non-inertial frame of reference.
Complete step by step answer:
As per the problem we know that a simple pendulum of length L suspended from the roof of a rocket accelerates upwards with a constant acceleration (g).
Now we need to find the time period of the simple pendulum.
Here in this problem the rocket accelerates with a constant acceleration of g in the upward direction. From the figure we can say that a rocket is an acceleration frame of reference. As we know that Newton's law is not applicable in the acceleration frame of reference hence if we want to use Newton's law of motion in the acceleration frame of reference then we have to use a pseudo acceleration that is acting on the pendulum.
Since the rocket is accelerating in an upward direction same as that of the acceleration due to gravity and the pendulum bob experiences downward pseudo acceleration which is also equal to g.
Therefore the effective acceleration acting on the pendulum is equals to,
${a_{eff}} = {a_r} - {a_s}$
Where,
${a_{eff}}$ is the effective acceleration of the pendulum.
${a_r}$ is the acceleration due to the frame of reference that is g.
And ${a_s}$ is the pseudo acceleration that is –g.
Now putting the respective values we will get,
${a_{eff}} = g - \left( { - g} \right) = 2g$
We know the periodic time of a simple pendulum as,
$T = 2\pi \sqrt {\dfrac{L}{{{a_{eff}}}}} $
$ \Rightarrow T = 2\pi \sqrt {\dfrac{L}{{2g}}} $
Therefore the correct option is (C).
Note: Remember that here the pseudo force acting on the pendulum is opposite to the direction of acceleration of the frame of reference and the pseudo force or acceleration is always equal to the magnitude of the reference acceleration or force. Note that pseudo force or acceleration is an apparent force that acts on all the masses whose motion is described using a non-inertial frame of reference.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE