
The pH of $0 \cdot 05{\text{ M}}$ aqueous solution of diethyl amine is ${\text{12}}$. Calculate its ${K_{\text{b}}}$.
Answer
583.2k+ views
Hint: The measure basicity or the strength of base is known as base dissociation constant $\left( {{K_{\text{b}}}} \right)$. Calculate the pOH from the pH given which gives the concentration of ${\text{O}}{{\text{H}}^ - }$.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

