Answer
Verified
460.5k+ views
Hint: The measure basicity or the strength of base is known as base dissociation constant $\left( {{K_{\text{b}}}} \right)$. Calculate the pOH from the pH given which gives the concentration of ${\text{O}}{{\text{H}}^ - }$.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Complete step by step answer:
Step 1:
Calculate the pOH using the equation as follows:
${\text{pH}} + {\text{pOH}} = 14$
Rearrange the equation for pOH as follows:
${\text{pOH}} = 14 - {\text{pH}}$
Substitute ${\text{12}}$ for pH. Thus,
${\text{pOH}} = 14 - 12 = 2$
Thus, the pOH is $2$.
Step 2:
Calculate the concentration of ${\text{O}}{{\text{H}}^ - }$ using the equation as follows:
${\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Rearrange the equation for the concentration of ${\text{O}}{{\text{H}}^ - }$ as follows:
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - {\text{pOH}}}}$
Thus,
$\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}}$
Thus, the concentration of ${\text{O}}{{\text{H}}^ - }$ is ${10^{ - 2}}{\text{ M}}$.
Step 3:
Calculate the base dissociation constant as follows:
The dissociation of diethylamine occurs as follows:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
At equilibrium:
${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$
${\text{ 0}} \cdot {\text{05 0 0}}$
${\text{ 0}} \cdot {\text{05-x x x}}$
Thus, $x = \left[ {{\text{O}}{{\text{H}}^ - }} \right] = {10^{ - 2}}{\text{ M}} = 0 \cdot 01{\text{ M}}$
Calculate the base dissociation constant as follows:
${K_{\text{b}}} = \dfrac{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}_2^ + } \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)}_{\text{2}}}{\text{NH}}} \right]}}$
${K_{\text{b}}} = \dfrac{{\left( x \right)\left( x \right)}}{{\left( {0 \cdot 05 - x} \right)}}$
${K_{\text{b}}} = \dfrac{{\left( {0 \cdot 01} \right)\left( {0 \cdot 01} \right)}}{{\left( {0 \cdot 05 - 0 \cdot 01} \right)}}$
${K_{\text{b}}} = \dfrac{{{{\left( {0 \cdot 01} \right)}^2}}}{{0 \cdot 04}}$
${K_{\text{b}}} = 2 \cdot 5 \times {10^{ - 3}}$
Thus, the base dissociation constant is $2 \cdot 5 \times {10^{ - 3}}$.
Note:
Diethyl amine dissociates as shown in the reaction, ${\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}} + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\left( {{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}} \right)_{\text{2}}}{\text{NH}}_2^ + + {\text{O}}{{\text{H}}^ - }$. Setup the equilibrium table and calculate the base dissociation constant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE