The point A divides the join of $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio .What is the value of for which the area of the $ \Delta ABC $ where $ B(1,5) $ , $ C\left( {7, - 2} \right) $ is 2 square units.?
A. $ 7,\dfrac{{31}}{9} $
B. $ - 7,\dfrac{{31}}{9} $
C. $ 7, - \dfrac{{31}}{9} $
D. $ - 7, - \dfrac{{31}}{9} $
Answer
Verified
466.5k+ views
Hint: The coordinates of point is to be calculated using the section formula. The coordinates of point which divides the join of two points internally in the ratio $ m:n $ , $ D\left( {{x_1},{y_1}} \right) $ and $ E\left( {{x_2},{y_2}} \right) $ is $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ . Then calculate the area of the triangle using the coordinates of the points A,B and C.
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE