Answer
Verified
394.2k+ views
Hint: In order to find the magnitude of velocity we will use the derivative of displacement in both the components in given $x$ and $y$ direction and then using vector algebra we will find net magnitude of the velocity and its direction.
Complete step by step answer:
As we know that velocity and displacement are related as ${v_x} = \dfrac{{dx}}{{dt}}$ in the x direction and in y direction it can be calculated as ${v_y} = \dfrac{{dy}}{{dt}}$ .
we have given that, $x = 6t$ taking derivative of this we will get,
${v_x} = \dfrac{{dx}}{{dt}}$
$\Rightarrow {v_x} = 6\hat{ i}$
Now, we will find the velocity in y direction using $y = 8t - 5{t^2}$ we will get,
${v_y} = \dfrac{{dy}}{{dt}}$
$\Rightarrow {v_y} = 8 - 10t$
In origin we have $t = 0$ so we get,
${v_y} = 8\hat j$
Hence, net velocity can be written together in the vector form as:
$\vec v = 6\hat i + 8\hat j$
Now, the resultant velocity of the projectile can be found using the formula we have,
$\left| v \right| = \sqrt {{v_x}^2 + {v_y}^2} $
On putting the magnitudes we get,
$\left| v \right| = \sqrt {64 + 36} $
$\therefore \left| v \right| = 10\,m\,{\sec ^{ - 1}}$
Hence, the magnitude of velocity of the projectile is $\left| v \right| = 10\,m\,{\sec ^{ - 1}}$ and its direction of velocity of the projectile can be written as $\vec v = 6\hat i + 8\hat j$.
Note: It should be remembered that, the basic formulas of derivation of one variable with respect to other with functions like $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ and the resultant magnitude of a given vector in two dimensional form by calculated as $R = \sqrt {{P^2} + {Q^2}} $ where $P$ and $Q$ are the two components of a vector $R$ in $x$ and $y$ directions respectively.
Complete step by step answer:
As we know that velocity and displacement are related as ${v_x} = \dfrac{{dx}}{{dt}}$ in the x direction and in y direction it can be calculated as ${v_y} = \dfrac{{dy}}{{dt}}$ .
we have given that, $x = 6t$ taking derivative of this we will get,
${v_x} = \dfrac{{dx}}{{dt}}$
$\Rightarrow {v_x} = 6\hat{ i}$
Now, we will find the velocity in y direction using $y = 8t - 5{t^2}$ we will get,
${v_y} = \dfrac{{dy}}{{dt}}$
$\Rightarrow {v_y} = 8 - 10t$
In origin we have $t = 0$ so we get,
${v_y} = 8\hat j$
Hence, net velocity can be written together in the vector form as:
$\vec v = 6\hat i + 8\hat j$
Now, the resultant velocity of the projectile can be found using the formula we have,
$\left| v \right| = \sqrt {{v_x}^2 + {v_y}^2} $
On putting the magnitudes we get,
$\left| v \right| = \sqrt {64 + 36} $
$\therefore \left| v \right| = 10\,m\,{\sec ^{ - 1}}$
Hence, the magnitude of velocity of the projectile is $\left| v \right| = 10\,m\,{\sec ^{ - 1}}$ and its direction of velocity of the projectile can be written as $\vec v = 6\hat i + 8\hat j$.
Note: It should be remembered that, the basic formulas of derivation of one variable with respect to other with functions like $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ and the resultant magnitude of a given vector in two dimensional form by calculated as $R = \sqrt {{P^2} + {Q^2}} $ where $P$ and $Q$ are the two components of a vector $R$ in $x$ and $y$ directions respectively.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE