Answer
Verified
502.2k+ views
Hint: Apply section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Given points are $\left( {1,3,4} \right)$ and $\left( {4,3,1} \right)$.
Let $\left( {1,3,4} \right) \equiv \left( {{x_1},{y_1},{z_1}} \right)$
And $\left( {4,3,1} \right) \equiv \left( {{x_2},{y_2},{z_2}} \right)$
Now, let the point $\left( {x,y,z} \right)$ divide the line internally in the ratio $2:1$
So, by section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Here $m = 2{\text{ & }}n = 1$
$x = \dfrac{{\left( {2.\left( 4 \right) + 1.\left( 1 \right)} \right)}}{{2 + 1}},y = \dfrac{{\left( {2.\left( 3 \right) + 1.\left( 3 \right)} \right)}}{{2 + 1}},z = \dfrac{{\left( {2.\left( 1 \right) + 1.\left( 4 \right)} \right)}}{{2 + 1}}$
$ \Rightarrow \left( {x,y,z} \right) = \left( {\dfrac{9}{3},\dfrac{9}{3},\dfrac{6}{3}} \right) = \left( {3,3,2} \right)$
Hence option (e) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the section formula which is stated above then substitute the given points in this formula and simplify, we will get the required points which divide the line internally in the ratio $2:1$.
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Given points are $\left( {1,3,4} \right)$ and $\left( {4,3,1} \right)$.
Let $\left( {1,3,4} \right) \equiv \left( {{x_1},{y_1},{z_1}} \right)$
And $\left( {4,3,1} \right) \equiv \left( {{x_2},{y_2},{z_2}} \right)$
Now, let the point $\left( {x,y,z} \right)$ divide the line internally in the ratio $2:1$
So, by section formula if a line divide the points $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\left( {m:n} \right)$ internally then
$x = \dfrac{{\left( {m.{x_2} + n.{x_1}} \right)}}{{m + n}},y = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}},z = \dfrac{{\left( {m.{y_2} + n.{y_1}} \right)}}{{m + n}}$
Here $m = 2{\text{ & }}n = 1$
$x = \dfrac{{\left( {2.\left( 4 \right) + 1.\left( 1 \right)} \right)}}{{2 + 1}},y = \dfrac{{\left( {2.\left( 3 \right) + 1.\left( 3 \right)} \right)}}{{2 + 1}},z = \dfrac{{\left( {2.\left( 1 \right) + 1.\left( 4 \right)} \right)}}{{2 + 1}}$
$ \Rightarrow \left( {x,y,z} \right) = \left( {\dfrac{9}{3},\dfrac{9}{3},\dfrac{6}{3}} \right) = \left( {3,3,2} \right)$
Hence option (e) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the section formula which is stated above then substitute the given points in this formula and simplify, we will get the required points which divide the line internally in the ratio $2:1$.
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE