
The points with position vectors\[20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \] are collinear. The value of p is:
Answer
571.5k+ views
Hint: If we have two vectors A and B then \[\overrightarrow {AB} \] is given as \[\overrightarrow B - \overrightarrow A \]. Two vectors A and B to be collinear, angle between the vector A and B made by the given position vectors should be 0 or 180 degree.
Complete step-by-step answer:
Suppose position vector\[\overrightarrow A = 20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[\overrightarrow B = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[\overrightarrow C = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \].
Now, \[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \]
\[
= 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - (20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ) \\
= - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge \\
\]
Similarly, \[\overrightarrow { = BC} = \overrightarrow C - \overrightarrow B \]
\[
= 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge - (5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge ) \\
= 5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge \\
\]
As we know they are collinear, the angle between the vector AB and BC must be 0 or 180 degree.
\[
\Rightarrow \overrightarrow {AB} \times \overrightarrow {BC} = 0 \\
\Rightarrow \left( { - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge } \right) \times \left( {5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge } \right) = 0 \\
\Rightarrow 0\mathop i\limits^ \wedge + ( - 15)( - 12) + (1 + p)(5) + 0\mathop j\limits^ \wedge = 0 \\
\Rightarrow 180 + 5 + 5p = 0 \\
\Rightarrow 5p = - 185 \\
\Rightarrow p = - 37 \\
\]
Required value of p is -37.
Note: Collinear points are the points that lie on a single line and therefore the angle between them will either be 0 or 180 degree. So, if two vectors \[\overrightarrow A \] and \[\overrightarrow B \]are collinear then we can write it as \[\overrightarrow A = n\overrightarrow B \].
Complete step-by-step answer:
Suppose position vector\[\overrightarrow A = 20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[\overrightarrow B = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[\overrightarrow C = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \].
Now, \[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \]
\[
= 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - (20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ) \\
= - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge \\
\]
Similarly, \[\overrightarrow { = BC} = \overrightarrow C - \overrightarrow B \]
\[
= 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge - (5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge ) \\
= 5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge \\
\]
As we know they are collinear, the angle between the vector AB and BC must be 0 or 180 degree.
\[
\Rightarrow \overrightarrow {AB} \times \overrightarrow {BC} = 0 \\
\Rightarrow \left( { - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge } \right) \times \left( {5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge } \right) = 0 \\
\Rightarrow 0\mathop i\limits^ \wedge + ( - 15)( - 12) + (1 + p)(5) + 0\mathop j\limits^ \wedge = 0 \\
\Rightarrow 180 + 5 + 5p = 0 \\
\Rightarrow 5p = - 185 \\
\Rightarrow p = - 37 \\
\]
Required value of p is -37.
Note: Collinear points are the points that lie on a single line and therefore the angle between them will either be 0 or 180 degree. So, if two vectors \[\overrightarrow A \] and \[\overrightarrow B \]are collinear then we can write it as \[\overrightarrow A = n\overrightarrow B \].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

