Answer
Verified
467.7k+ views
Hint: We are given position x in terms of another variable t (time), we must differentiate this twice to get the acceleration equation which when multiplied by mass will give us a force equation. Then we can use Force times displacement to get the work done.
Formula used:
For a small displacement dx, caused by a force F the work done is given as:
$W = \int F dx$
Complete step by step answer:
First we write down the expression for position x:
$x = 3t - 3t^2 + t^3$ .
By differentiating this expression twice w.r.t. time we get acceleration as:
$a = \dfrac{d^2 x}{dt^2} = -6 + 6t$.
We can now write the expression for force F = ma; as we know mass of the particle is 10 kg so;
$F = -60 + 60t$
Infinitesimal work done due to this force causing displacement dx can be written as:
$dW = F.dx$
Therefore, we need to determine dx first. From the expression for x, we can write:
$dx = 3 dt - 6t dt + 3t^2 dt$
where we simply differentiate once on both sides of x with respect to time.
Multiply the dx with F first to simplify the integration ahead:
$F.dx = (-60 + 60t).(3 dt - 6t dt + 3t^2 dt)$
$F.dx = -180 dt + 360t dt -180t^2 dt + 180t dt -360t^2 dt + 180t^3 dt$
$F.dx = -180 dt + 540t dt -540t^2 dt + 180t^3 dt$
Performing integration now, we get the work done as:
$W = \int_{0}^{3} (-180 + 540t -540t^2 + 180t^3 )dt$
we kept the limits t = 0 s to t = 3 s.
$W = -180 (t)_{0}^{3}+ 540 \left( \dfrac{t^2}{2} \right)_{0}^{3} -540 \left( \dfrac{t^3}{3} \right)_{0}^{3} + 180 \left( \dfrac{t^4}{4} \right)_{0}^{3} $
$W = -540 + 2430 - 4860 + 3645 = 675 J$
Therefore, the correct answer is option (D). 675 J is the work done in the first 3 seconds.
Note:
The integration in the formula for work usually is done considering the variable to be x (as we had F.dx) but here we made a variable change from x to t with the help of the given expression for x. As we change the variable from x to t we also change the limits accordingly. As we had to find work done for the first 3s, we took initial time t = 0s and final time to be t = 3s in the limits of integral.
Formula used:
For a small displacement dx, caused by a force F the work done is given as:
$W = \int F dx$
Complete step by step answer:
First we write down the expression for position x:
$x = 3t - 3t^2 + t^3$ .
By differentiating this expression twice w.r.t. time we get acceleration as:
$a = \dfrac{d^2 x}{dt^2} = -6 + 6t$.
We can now write the expression for force F = ma; as we know mass of the particle is 10 kg so;
$F = -60 + 60t$
Infinitesimal work done due to this force causing displacement dx can be written as:
$dW = F.dx$
Therefore, we need to determine dx first. From the expression for x, we can write:
$dx = 3 dt - 6t dt + 3t^2 dt$
where we simply differentiate once on both sides of x with respect to time.
Multiply the dx with F first to simplify the integration ahead:
$F.dx = (-60 + 60t).(3 dt - 6t dt + 3t^2 dt)$
$F.dx = -180 dt + 360t dt -180t^2 dt + 180t dt -360t^2 dt + 180t^3 dt$
$F.dx = -180 dt + 540t dt -540t^2 dt + 180t^3 dt$
Performing integration now, we get the work done as:
$W = \int_{0}^{3} (-180 + 540t -540t^2 + 180t^3 )dt$
we kept the limits t = 0 s to t = 3 s.
$W = -180 (t)_{0}^{3}+ 540 \left( \dfrac{t^2}{2} \right)_{0}^{3} -540 \left( \dfrac{t^3}{3} \right)_{0}^{3} + 180 \left( \dfrac{t^4}{4} \right)_{0}^{3} $
$W = -540 + 2430 - 4860 + 3645 = 675 J$
Therefore, the correct answer is option (D). 675 J is the work done in the first 3 seconds.
Note:
The integration in the formula for work usually is done considering the variable to be x (as we had F.dx) but here we made a variable change from x to t with the help of the given expression for x. As we change the variable from x to t we also change the limits accordingly. As we had to find work done for the first 3s, we took initial time t = 0s and final time to be t = 3s in the limits of integral.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light