
The position of a particle as a function of time t, is given by $x(t)= at + b{t}^{2} – c{t}^{3}$, where a, b and c are constants. When the particle attains zero acceleration, then it’s velocity will be?
A. $a + \dfrac {{b}^{2}}{4c}$
B. $a + \dfrac {{b}^{2}}{c}$
C. $a + \dfrac {{b}^{2}}{2c}$
D. $a + \dfrac {{b}^{2}}{3c}$
Answer
474.3k+ views
Hint: To solve this problem, first find the velocity of the particle. Differentiating the equation for position will give the velocity of the particle. Then, differentiate the equation for velocity to get the acceleration. Equate this equation to zero as acceleration is given as zero. Rearrange the equation and find the value of t. Substitute this value of t in the expression for velocity of the particle. This will give the velocity of the particle when acceleration is zero.
Formula used:
$v = \dfrac {dx}{dt}$
$a = \dfrac {dv}{dt}$
Complete answer:
The position of a particle is given by,
$x(t)= at + b{t}^{2} – c{t}^{3}$ ...(1)
Velocity of the particle is given by,
$v = \dfrac {dx}{dt}$
Differentiating equation. (1) w.r.t. time we get,
$v= a + 2bt – 3c{t}^{2}$ ...(2)
Acceleration is given by,
$a = \dfrac {dv}{dt}$
Differentiating equation. (2) w.r.t. time we get,
$a = 2b – 6ct$ ...(3)
It is given that acceleration is zero. So, equation.(3) becomes
$0= 2b-6ct$
$\Rightarrow 6ct= 2b$
$\Rightarrow t = \dfrac {b}{3c}$ ...(4)
Substituting equation. (4) in equation. (3) we get,
$v= a + 2b \times \dfrac {b}{3c} – 3c \times {\dfrac {b}{3c}}^{2}$
$\Rightarrow v= a + \dfrac {2{b}^{2}}{3c}- \dfrac {{b}^{2}}{3c}$
$\Rightarrow v= a + \dfrac {{b}^{2}}{3c}$
Hence, when the particle attains zero acceleration, then it’s velocity will be $ a + \dfrac {{b}^{2}}{3c}$.
So, the correct answer is “Option D”.
Note:
To solve these types of problems, students should know the relation between velocity, positions and acceleration and should also know how to calculate velocity and acceleration from the position of the particle or vice-versa. They should also know basic mathematical tools like integration and differentiation.
Formula used:
$v = \dfrac {dx}{dt}$
$a = \dfrac {dv}{dt}$
Complete answer:
The position of a particle is given by,
$x(t)= at + b{t}^{2} – c{t}^{3}$ ...(1)
Velocity of the particle is given by,
$v = \dfrac {dx}{dt}$
Differentiating equation. (1) w.r.t. time we get,
$v= a + 2bt – 3c{t}^{2}$ ...(2)
Acceleration is given by,
$a = \dfrac {dv}{dt}$
Differentiating equation. (2) w.r.t. time we get,
$a = 2b – 6ct$ ...(3)
It is given that acceleration is zero. So, equation.(3) becomes
$0= 2b-6ct$
$\Rightarrow 6ct= 2b$
$\Rightarrow t = \dfrac {b}{3c}$ ...(4)
Substituting equation. (4) in equation. (3) we get,
$v= a + 2b \times \dfrac {b}{3c} – 3c \times {\dfrac {b}{3c}}^{2}$
$\Rightarrow v= a + \dfrac {2{b}^{2}}{3c}- \dfrac {{b}^{2}}{3c}$
$\Rightarrow v= a + \dfrac {{b}^{2}}{3c}$
Hence, when the particle attains zero acceleration, then it’s velocity will be $ a + \dfrac {{b}^{2}}{3c}$.
So, the correct answer is “Option D”.
Note:
To solve these types of problems, students should know the relation between velocity, positions and acceleration and should also know how to calculate velocity and acceleration from the position of the particle or vice-versa. They should also know basic mathematical tools like integration and differentiation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

What is the degree of the angle at 6 oclock-class-8-maths-CBSE

Bad effects of various festivals on the environment class 8 chemistry CBSE

How would you describe a globe class 8 physics CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Which of the following is not a feature of the election class 11 social science CBSE

The mass of oxalic acid crystals H2C2O42H2O required class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE
