
The potential energy of a uniform circular disc of radius R and carrying charge density $\sigma $ is
A. \[\dfrac{2}{3}\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{\varepsilon_0}\]
B. \[\dfrac{1}{3}\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{\varepsilon_0}\]
C. \[\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{\varepsilon_0}\]
D. Can Not be determined
Answer
571.5k+ views
Hint: While solving this question, try to find out the expression for the potential energy of a disc with unit area. After that integrate that express to find out the potential of the disc with the required radius/area. Electrical potential energy, or Electrostatic potential energy, is a potential energy (measured in joules) that arises from conservative Coulomb forces and is correlated with the configuration of a certain set of point charges within a given device. An object can provide electrical potential energy from two main elements: its own electrical charge and its relative location to other electrically charged objects.
Formula used:
For solving this question, we will be using the formula for the potential energy, i.e
${{U}_{E}}=k\dfrac{{{q}_{1}}{{q}_{2}}}{r}$
Complete answer:
Area of the disc = $\pi {{R}^{2}}$
So, total charge on the disc will be,
$q=\sigma \pi {{R}^{2}}$
Now, let us assume a small area dA
So,
$dA=2\pi rdr$
So, we have
$\begin{align}
& dq=\sigma dA \\
& dq=2\sigma \pi rdr \\
\end{align}$
Now,
$\begin{align}
& dU=\dfrac{kqdq}{r} \\
& U=\int{dU=\int{\dfrac{kqdq}{r}}} \\
\end{align}$
$\begin{align}
& \Rightarrow U=2{{\pi }^{2}}K{{\sigma }^{2}}\int\limits_{0}^{R}{{{r}^{2}}dr} \\
& \Rightarrow U=\dfrac{2{{\pi }^{2}}K{{\sigma }^{2}}{{R}^{3}}}{3} \\
\end{align}$
Now,
Since,
$\Rightarrow K=\dfrac{1}{4\pi {{\varepsilon }_{o}}}$
We have,
$\begin{align}
& \Rightarrow U=\dfrac{2{{\pi }^{2}}{{\sigma }^{2}}{{R}^{3}}}{3}\dfrac{1}{4\pi {{\varepsilon }_{o}}} \\
& \Rightarrow U=\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{3{{\varepsilon }_{o}}} \\
\end{align}$
So, the potential energy of a uniform circular disc of radius R and carrying charge density $\sigma $ will be $U=\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{3{{\varepsilon }_{o}}}$.
i.e., Option – C is the correct answer.
Note:
The term "electric potential energy" is used to characterise potential energy in systems with time-variant electrical fields, while the term "electrostatic potential energy" is used to characterise potential energy in systems with time-invariant electrical fields. The term potential energy was invented by the Scottish engineer and physicist William Rankine of the 19th century, although it is related to the Greek philosopher Aristotle 's idea of potentiality.
Formula used:
For solving this question, we will be using the formula for the potential energy, i.e
${{U}_{E}}=k\dfrac{{{q}_{1}}{{q}_{2}}}{r}$
Complete answer:
Area of the disc = $\pi {{R}^{2}}$
So, total charge on the disc will be,
$q=\sigma \pi {{R}^{2}}$
Now, let us assume a small area dA
So,
$dA=2\pi rdr$
So, we have
$\begin{align}
& dq=\sigma dA \\
& dq=2\sigma \pi rdr \\
\end{align}$
Now,
$\begin{align}
& dU=\dfrac{kqdq}{r} \\
& U=\int{dU=\int{\dfrac{kqdq}{r}}} \\
\end{align}$
$\begin{align}
& \Rightarrow U=2{{\pi }^{2}}K{{\sigma }^{2}}\int\limits_{0}^{R}{{{r}^{2}}dr} \\
& \Rightarrow U=\dfrac{2{{\pi }^{2}}K{{\sigma }^{2}}{{R}^{3}}}{3} \\
\end{align}$
Now,
Since,
$\Rightarrow K=\dfrac{1}{4\pi {{\varepsilon }_{o}}}$
We have,
$\begin{align}
& \Rightarrow U=\dfrac{2{{\pi }^{2}}{{\sigma }^{2}}{{R}^{3}}}{3}\dfrac{1}{4\pi {{\varepsilon }_{o}}} \\
& \Rightarrow U=\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{3{{\varepsilon }_{o}}} \\
\end{align}$
So, the potential energy of a uniform circular disc of radius R and carrying charge density $\sigma $ will be $U=\dfrac{\pi \sigma _{{}}^{2}{{R}^{3}}}{3{{\varepsilon }_{o}}}$.
i.e., Option – C is the correct answer.
Note:
The term "electric potential energy" is used to characterise potential energy in systems with time-variant electrical fields, while the term "electrostatic potential energy" is used to characterise potential energy in systems with time-invariant electrical fields. The term potential energy was invented by the Scottish engineer and physicist William Rankine of the 19th century, although it is related to the Greek philosopher Aristotle 's idea of potentiality.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

