Answer
Verified
463.2k+ views
Hint
The pressure at the bottom of a tank consists of two components. One is the atmospheric pressure and the other is the pressure exerted by the weight of the liquid.
$ P = \rho gh $ , Where, $ P $ is the total pressure at the bottom of a column of height $ h $ , filled with liquid of density $ \rho $ , and $ g $ is the gravitational acceleration. The SI unit of pressure is Pascal.
Complete step by step answer
We are provided with the information that the pressure at the bottom of a tank is $ 3P $ . We also know that the atmospheric pressure is given by $ P $ . We are aware that the total pressure at the bottom of a tank can be written as:
$ {P_t} = {P_{atm}} + {P_{liquid}} $
So, if we try to find the pressure exerted by the weight of water in this case, we get:
$ {P_w} = {P_t} - {P_{atm}}
\Rightarrow {P_w} = 3P - P $
This gives us the pressure due to the weight of water as $ 2P $ .
We also know that this pressure can be expressed as:
$ P = \rho gh $ [Eq. 1]
Now according to the question, we reduce the level of water (i.e. the height of water h) by one fifth. This gives us the new height as:
$h' = h - \dfrac{1}{5}h
\Rightarrow h' = \dfrac{{5h - h}}{5} $
Solving for $ h' $ , we get the new height = $ \dfrac{{4h}}{5} $
Hence, the new pressure will be given as:
$ {P_{new}} = \rho gh' $
Substituting the value of $ h' $ gives us:
${P_{new}} = \rho g \times \dfrac{4}{5}h
\Rightarrow {P_{new}} = \dfrac{4}{5}(\rho gh) $
We use Eq. 1 to get the answer in generic terms:
$ {P_{new}} = \dfrac{4}{5}P $
$ \therefore $ The correct answer is option D i.e. $ \dfrac{4}{5}P $.
Note
The trick here is to check the point at which we need to measure the pressure. For example, the pressure at the top of a tank would only be equal to the atmospheric pressure, but at the bottom it is different (as we saw in this question). The pressure in between is also calculated by the addition of atmospheric pressure and the pressure of the weight of the liquid above that height.
The pressure at the bottom of a tank consists of two components. One is the atmospheric pressure and the other is the pressure exerted by the weight of the liquid.
$ P = \rho gh $ , Where, $ P $ is the total pressure at the bottom of a column of height $ h $ , filled with liquid of density $ \rho $ , and $ g $ is the gravitational acceleration. The SI unit of pressure is Pascal.
Complete step by step answer
We are provided with the information that the pressure at the bottom of a tank is $ 3P $ . We also know that the atmospheric pressure is given by $ P $ . We are aware that the total pressure at the bottom of a tank can be written as:
$ {P_t} = {P_{atm}} + {P_{liquid}} $
So, if we try to find the pressure exerted by the weight of water in this case, we get:
$ {P_w} = {P_t} - {P_{atm}}
\Rightarrow {P_w} = 3P - P $
This gives us the pressure due to the weight of water as $ 2P $ .
We also know that this pressure can be expressed as:
$ P = \rho gh $ [Eq. 1]
Now according to the question, we reduce the level of water (i.e. the height of water h) by one fifth. This gives us the new height as:
$h' = h - \dfrac{1}{5}h
\Rightarrow h' = \dfrac{{5h - h}}{5} $
Solving for $ h' $ , we get the new height = $ \dfrac{{4h}}{5} $
Hence, the new pressure will be given as:
$ {P_{new}} = \rho gh' $
Substituting the value of $ h' $ gives us:
${P_{new}} = \rho g \times \dfrac{4}{5}h
\Rightarrow {P_{new}} = \dfrac{4}{5}(\rho gh) $
We use Eq. 1 to get the answer in generic terms:
$ {P_{new}} = \dfrac{4}{5}P $
$ \therefore $ The correct answer is option D i.e. $ \dfrac{4}{5}P $.
Note
The trick here is to check the point at which we need to measure the pressure. For example, the pressure at the top of a tank would only be equal to the atmospheric pressure, but at the bottom it is different (as we saw in this question). The pressure in between is also calculated by the addition of atmospheric pressure and the pressure of the weight of the liquid above that height.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE