
The principal argument of $\dfrac{i-3}{i-1}$ is:
$\left( a \right)tan^{-1}\dfrac{1}{2}$
$\left( b \right) tan^{-1}\dfrac{3}{2}$
$\left( c \right) tan^{-1}\dfrac{5}{2}$
$\left( d \right) tan^{-1}\dfrac{7}{2}$
Answer
518.1k+ views
Hint: We are asked to find the principal argument of a given complex number. But we see that it is not in the standard $a+bi$ form. So, we first convert this into the standard form and then apply the definition of principal argument to find the answer. We should be aware of some terms such as argument, principal argument which are related to the imaginary numbers in order to solve this question.
Complete step by step answer:
We have $\dfrac{i-3}{i-1}$. We need to first convert this into a standard form. For this, we multiply both numerator and denominator by $i+1$. Doing this we get:
$\dfrac{i-3}{i-1}\times\dfrac{i+1}{i+1}=\dfrac{i^2+i-3i-3}{i^2-1^2}$
We have used the following identity in denominator:
$\left(a+b\right)\left(a-b\right)=a^2-b^2$
We get:
$\dfrac{-1-2i-3}{-1-1}=\dfrac{-4-2i}{-2}=2+i$
Hence, we have found out the complex number in standard form. Now, we know that the principal argument, $Arg\left(z\right)$of any complex number $z=a+bi$is found out using the following formula:
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)$ if $a>0$
And
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)+\pi$ if $a<0$
We have $2+i$ as the complex number. So $a=2$ and $b=1$. We conclude that $a>0$, hence the principal argument will be:
$Arg\left(2+i\right)=tan^{-1}\left(\dfrac{1}{2}\right)$
So, the correct answer is “Option a”.
Note: We can also do the same using the following formula:
$Arg\left(\dfrac{z_1}{z_2}\right)=Arg\left(z_1\right)-Arg\left(z_2\right)$
Here, put $z_1=i-3$ and $z_2=i-1$
Then $Arg\left(z_1\right)=tan^{-1}\dfrac{-1}{3}$
And $Arg\left(z_2\right)=tan^{-1}-1$
So, we have:
$Arg \left(\dfrac{i-3}{i-1}\right)= Arg\left(z_1\right)-Arg\left(z_2\right)$
$= tan^{-1}\dfrac{-1}{3}- tan^{-1}-1$
Now, we use the formula below:
$tan^{-1}A- tan^{-1}B=tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$
Using this we obtain the following:
$Arg \left(\dfrac{i-3}{i-1}\right)=tan^{-1}\left(\dfrac{-\dfrac{1}{3}+1}{1+\dfrac{1}{3}}\right)$
$=tan^{-1}\dfrac{1}{2}$
Hence, the answer is obtained correctly. But note that you should use this only when you remember the formula of inverse tan function correctly.
Complete step by step answer:
We have $\dfrac{i-3}{i-1}$. We need to first convert this into a standard form. For this, we multiply both numerator and denominator by $i+1$. Doing this we get:
$\dfrac{i-3}{i-1}\times\dfrac{i+1}{i+1}=\dfrac{i^2+i-3i-3}{i^2-1^2}$
We have used the following identity in denominator:
$\left(a+b\right)\left(a-b\right)=a^2-b^2$
We get:
$\dfrac{-1-2i-3}{-1-1}=\dfrac{-4-2i}{-2}=2+i$
Hence, we have found out the complex number in standard form. Now, we know that the principal argument, $Arg\left(z\right)$of any complex number $z=a+bi$is found out using the following formula:
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)$ if $a>0$
And
$Arg\left(z\right)=tan^{-1}\left(\dfrac{b}{a}\right)+\pi$ if $a<0$
We have $2+i$ as the complex number. So $a=2$ and $b=1$. We conclude that $a>0$, hence the principal argument will be:
$Arg\left(2+i\right)=tan^{-1}\left(\dfrac{1}{2}\right)$
So, the correct answer is “Option a”.
Note: We can also do the same using the following formula:
$Arg\left(\dfrac{z_1}{z_2}\right)=Arg\left(z_1\right)-Arg\left(z_2\right)$
Here, put $z_1=i-3$ and $z_2=i-1$
Then $Arg\left(z_1\right)=tan^{-1}\dfrac{-1}{3}$
And $Arg\left(z_2\right)=tan^{-1}-1$
So, we have:
$Arg \left(\dfrac{i-3}{i-1}\right)= Arg\left(z_1\right)-Arg\left(z_2\right)$
$= tan^{-1}\dfrac{-1}{3}- tan^{-1}-1$
Now, we use the formula below:
$tan^{-1}A- tan^{-1}B=tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$
Using this we obtain the following:
$Arg \left(\dfrac{i-3}{i-1}\right)=tan^{-1}\left(\dfrac{-\dfrac{1}{3}+1}{1+\dfrac{1}{3}}\right)$
$=tan^{-1}\dfrac{1}{2}$
Hence, the answer is obtained correctly. But note that you should use this only when you remember the formula of inverse tan function correctly.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

