Answer
Verified
397.9k+ views
Hint: We will consider a sample space and the favourable outcomes individually to avoid any kind of mistake. A composite number is a non prime number.
Complete step-by-step answer:
We are asked to find the probability of getting a composite or non prime number when we throw a dice.
When we throw a dice, the number of outcomes which are possible are \[6\].
The sample space \[S\] of the event is\[\left\{ {1,2,3,4,5,6} \right\}\].
There are 2 composite or non prime numbers in the sample space which are \[\{ 4,6\} \].
So, the number of favourable outcomes which are possible \[ = 2\]
Let \[A\] be the event of getting composite numbers when we throw a dice.
So, the probability of getting composite numbers when we throw a dice
\[
= P(A) \\
= \dfrac{{n(A)}}{{n(S)}} \\
= \dfrac{2}{6} \\
= \dfrac{1}{3} \\
\]
\[n(A)\& n(S)\]are the cardinal numbers of the event of getting composite numbers when we throw a dice and the sample space respectively.
Therefore, the probability of getting a composite number on throwing a dice is \[\dfrac{1}{3}\].
Thus, the answer is option A.
Note: We use the formula P(an event)\[ = \dfrac{{n(A)}}{{n(S)}}\]where A is the event, n(A) is the number of favourable outcomes and n(S) is the total number of possible outcomes. In these types of questions, we will always use the simple probability method in order to avoid making any mistakes.
Complete step-by-step answer:
We are asked to find the probability of getting a composite or non prime number when we throw a dice.
When we throw a dice, the number of outcomes which are possible are \[6\].
The sample space \[S\] of the event is\[\left\{ {1,2,3,4,5,6} \right\}\].
There are 2 composite or non prime numbers in the sample space which are \[\{ 4,6\} \].
So, the number of favourable outcomes which are possible \[ = 2\]
Let \[A\] be the event of getting composite numbers when we throw a dice.
So, the probability of getting composite numbers when we throw a dice
\[
= P(A) \\
= \dfrac{{n(A)}}{{n(S)}} \\
= \dfrac{2}{6} \\
= \dfrac{1}{3} \\
\]
\[n(A)\& n(S)\]are the cardinal numbers of the event of getting composite numbers when we throw a dice and the sample space respectively.
Therefore, the probability of getting a composite number on throwing a dice is \[\dfrac{1}{3}\].
Thus, the answer is option A.
Note: We use the formula P(an event)\[ = \dfrac{{n(A)}}{{n(S)}}\]where A is the event, n(A) is the number of favourable outcomes and n(S) is the total number of possible outcomes. In these types of questions, we will always use the simple probability method in order to avoid making any mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE