Answer
Verified
449.7k+ views
Hint: Here we will use the formula for finding the probability which states that the probability for occurring any event will be equals to Number of favorable outcomes divided by the total number of favorable/possible outcomes:
\[{\text{Probability}} = \dfrac{{{\text{Number of outcomes}}}}{{{\text{Total number of outcomes}}}}\]
Complete step-by-step solution:
Step 1: It is given in the question that the probability of India winning a test match is \[\dfrac{1}{2}\] . By relating this with the probability formula we can say that from \[5\] total matches, India will win \[2\] out of it.
Step 2: Since India’s second win of the match occurs at the third test, we will make cases out of it as shown below:
Case I: India will win the first and third match (W, L, W), where W represents won and L represents Loss. The probability of winning a match is \[\dfrac{1}{2}\] as given in the question and for not winning is also \[\dfrac{1}{2}\] because the sum of probability will be always \[1\].
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Case II: India will win the second and third match (L, W, W).
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Step 3: So, the final probability that in a \[5\] match series India’s second win occurs at the third test is:
\[ \Rightarrow {\text{Probability}} = \operatorname{P} \left( {{\text{case I}}} \right) + {\text{P}}\left( {{\text{case II}}} \right)\]
By substituting the values of probability of case I and II, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8} + \dfrac{1}{8}\]
By taking \[8\] common into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{2}{8}\]
By simplifying the term into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{4}\]
\[\therefore \]Option B is correct.
Note: Students need to remember some basic points about the probability that the range of the probability will always lie between \[0 \leqslant {\text{P(A)}} \leqslant {\text{1}}\] .
\[{\text{Probability}} = \dfrac{{{\text{Number of outcomes}}}}{{{\text{Total number of outcomes}}}}\]
Complete step-by-step solution:
Step 1: It is given in the question that the probability of India winning a test match is \[\dfrac{1}{2}\] . By relating this with the probability formula we can say that from \[5\] total matches, India will win \[2\] out of it.
Step 2: Since India’s second win of the match occurs at the third test, we will make cases out of it as shown below:
Case I: India will win the first and third match (W, L, W), where W represents won and L represents Loss. The probability of winning a match is \[\dfrac{1}{2}\] as given in the question and for not winning is also \[\dfrac{1}{2}\] because the sum of probability will be always \[1\].
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Case II: India will win the second and third match (L, W, W).
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}\]
By multiplying into the RHS side of the expression, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8}\]
Step 3: So, the final probability that in a \[5\] match series India’s second win occurs at the third test is:
\[ \Rightarrow {\text{Probability}} = \operatorname{P} \left( {{\text{case I}}} \right) + {\text{P}}\left( {{\text{case II}}} \right)\]
By substituting the values of probability of case I and II, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{8} + \dfrac{1}{8}\]
By taking \[8\] common into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{2}{8}\]
By simplifying the term into the RHS side, we get:
\[ \Rightarrow {\text{Probability}} = \dfrac{1}{4}\]
\[\therefore \]Option B is correct.
Note: Students need to remember some basic points about the probability that the range of the probability will always lie between \[0 \leqslant {\text{P(A)}} \leqslant {\text{1}}\] .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers