Answer
Verified
500.1k+ views
Hint- Total number of balls in the jar will be the sum of all colour balls. Consider some variable for the total number of balls, and then proceed further by the use of basic definition of probability.
Let the total number of balls in the given jar be $ = x$
As the probability of getting a red ball is $\dfrac{1}{4}$.
So total number of red ball in terms of variable $x$ is
$
= \dfrac{1}{4} \times x \\
= \dfrac{x}{4} \\
$
Also the probability of getting a blue ball is $\dfrac{1}{3}$ .
So total number of red ball in terms of variable $x$ is
$
= \dfrac{1}{3} \times x \\
= \dfrac{x}{3} \\
$
And the number of orange balls is $10$.
As we know that
Total number of balls in the jar = Number of red balls + Number of blue balls + Number of orange balls
$ \Rightarrow x = \dfrac{x}{4} + \dfrac{x}{3} + 10$
Taking LCM on the R.H.S. and then solving the algebraic equation.
$
\Rightarrow x = \dfrac{{4x + 3x + 120}}{{12}} \\
\Rightarrow 12x = 7x + 120 \\
\Rightarrow 5x = 120 \\
\Rightarrow x = 24 \\
$
Hence, the total number of balls in the jar is $24$ .
Note- Such a question as in above is easier to solve with the help of algebraic equations. Just we have to consider the unknown value as some variables and proceed. This problem can also be done in another way by first finding the probability of selection of orange balls by subtracting the sum of probabilities of red and blue balls from one and then comparing it with the number of orange balls.
Let the total number of balls in the given jar be $ = x$
As the probability of getting a red ball is $\dfrac{1}{4}$.
So total number of red ball in terms of variable $x$ is
$
= \dfrac{1}{4} \times x \\
= \dfrac{x}{4} \\
$
Also the probability of getting a blue ball is $\dfrac{1}{3}$ .
So total number of red ball in terms of variable $x$ is
$
= \dfrac{1}{3} \times x \\
= \dfrac{x}{3} \\
$
And the number of orange balls is $10$.
As we know that
Total number of balls in the jar = Number of red balls + Number of blue balls + Number of orange balls
$ \Rightarrow x = \dfrac{x}{4} + \dfrac{x}{3} + 10$
Taking LCM on the R.H.S. and then solving the algebraic equation.
$
\Rightarrow x = \dfrac{{4x + 3x + 120}}{{12}} \\
\Rightarrow 12x = 7x + 120 \\
\Rightarrow 5x = 120 \\
\Rightarrow x = 24 \\
$
Hence, the total number of balls in the jar is $24$ .
Note- Such a question as in above is easier to solve with the help of algebraic equations. Just we have to consider the unknown value as some variables and proceed. This problem can also be done in another way by first finding the probability of selection of orange balls by subtracting the sum of probabilities of red and blue balls from one and then comparing it with the number of orange balls.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE