Answer
Verified
394.5k+ views
Hint: In the given question, we need to find the probability of the given situation. Basically, by concept of probability we mean to find the possibility of occurrence of the event and then plan accordingly if any kind of situation is also given.
Complete step by step answer:
According to the question, we are given that France is someone who calls Michael and whenever he calls, he finds that line is busy with the probability of $\dfrac{2}{3}$. Also, we have been given that she does not call him daily but only on the four consecutive days. That means he calls Michael every day once and does so till four consecutive days.
Now, we need to find the probability of the situation that the call will come on all four days.
Now, the probability of a call being busy is $\dfrac{2}{3}$and similarly for every day it will remain the same as no further information is given.
So, the probability for four consecutive days is $\dfrac{2}{3}\times \dfrac{2}{3}\times \dfrac{2}{3}\times \dfrac{2}{3}=\dfrac{16}{81}$ .
Therefore, the probability of the given question is $\dfrac{16}{81}$ .
Note: We need to remember there are not any kind of restrictions mentioned while calling. We are simply asked to find the probability of the situation so we need to move around the definition of probability and then answer in spite of doing more complications and hence getting stuck.
Complete step by step answer:
According to the question, we are given that France is someone who calls Michael and whenever he calls, he finds that line is busy with the probability of $\dfrac{2}{3}$. Also, we have been given that she does not call him daily but only on the four consecutive days. That means he calls Michael every day once and does so till four consecutive days.
Now, we need to find the probability of the situation that the call will come on all four days.
Now, the probability of a call being busy is $\dfrac{2}{3}$and similarly for every day it will remain the same as no further information is given.
So, the probability for four consecutive days is $\dfrac{2}{3}\times \dfrac{2}{3}\times \dfrac{2}{3}\times \dfrac{2}{3}=\dfrac{16}{81}$ .
Therefore, the probability of the given question is $\dfrac{16}{81}$ .
Note: We need to remember there are not any kind of restrictions mentioned while calling. We are simply asked to find the probability of the situation so we need to move around the definition of probability and then answer in spite of doing more complications and hence getting stuck.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE