Answer
Verified
493.2k+ views
Hint: We know that consecutive numbers are the number which follow each other in order, without any gap like 22,24,26,28 are the example of consecutive even numbers. Similarly we will find 4 consecutive natural numbers as $n$, $n+1$, $n+2$ and $n+3$. According to the question $n\times (n+1)\times (n+2)\times (n+3)=5040$.
Complete step-by-step answer:
It is given in the question that the product of four consecutive natural numbers is 5040. We know that any consecutive number following order like 1,3,5,7,9 are the consecutive odd natural numbers. Also the natural numbers start from 1. Now, let us assume that the first number out of 4 numbers is $n$, therefore, the second number will be $n+1$, third number will be $n+2$, fourth number will be $n+3$.
Given that the product of these consecutive numbers is 5040. Therefore, in mathematical form, we can write as following equation -
$n\times (n+1)\times (n+2)\times (n+3)=5040$. On solving we get following steps
= $({{n}^{2}}+3n)\times ({{n}^{2}}+3n+2)=5040$
Now, we assume that $a=({{n}^{2}}+3n)$, then, we get $a\times (a+2)=5040$
= ${{a}^{2}}+2a=5040$, adding 1 to both sides, we get
= ${{a}^{2}}+2a+1=5041$
= ${{(a+1)}^{2}}=5041$.
Therefore, taking under root on both sides
$(a+1)=\pm 71$ .
According to our assumption, $a=({{n}^{2}}+3n)$, so using this equation, we get
${{n}^{2}}+3n+1=\pm 71$, now we have two equations, ${{n}^{2}}+3n-70=0$ and ${{n}^{2}}+3n+72=0$. For equation ${{n}^{2}}+3n+72=0$, we get Discriminant, D, to be negative,
$D={{b}^{2}}-4ac$
$\begin{align}
& D=9-4\times 1\times 72 \\
& D=9-288 \\
& D=-279 \\
\end{align}$
therefore no real roots.
Hence only the equation ${{n}^{2}}+3n-70=0$ is left. Solving this equation, we get
$\begin{align}
& {{n}^{2}}+10n-7n-70=0 \\
& n\times (n+10)-7\times (n+10)=0 \\
& (n+10)\times (n-7)=0 \\
\end{align}$
Therefore, $n=7$ and $n=-10$. We know that -10 is not a natural number, therefore $n=7$ is the only solution for the given question. Hence, the consecutive numbers that satisfy the given equation are $n=7$, $n+1=8$, $n+2=9$, $n+3=10$ , that is, $7\times 8\times 9\times 10=5040$ .
Note: If we do not assume $a=({{n}^{2}}+3n)$ in the solution part then our calculation becomes more complex and the chances of error are increased. So, in order to reduce our effort we must proceed with the made assumption.Students should know the concept of discriminant to check whether roots are real or imaginary.To find discriminant we use ${D}^2={b}^2-4ac$, If $D>0$ and $D=0$ then roots are real and if $D < 0$ then roots are imaginary.
Complete step-by-step answer:
It is given in the question that the product of four consecutive natural numbers is 5040. We know that any consecutive number following order like 1,3,5,7,9 are the consecutive odd natural numbers. Also the natural numbers start from 1. Now, let us assume that the first number out of 4 numbers is $n$, therefore, the second number will be $n+1$, third number will be $n+2$, fourth number will be $n+3$.
Given that the product of these consecutive numbers is 5040. Therefore, in mathematical form, we can write as following equation -
$n\times (n+1)\times (n+2)\times (n+3)=5040$. On solving we get following steps
= $({{n}^{2}}+3n)\times ({{n}^{2}}+3n+2)=5040$
Now, we assume that $a=({{n}^{2}}+3n)$, then, we get $a\times (a+2)=5040$
= ${{a}^{2}}+2a=5040$, adding 1 to both sides, we get
= ${{a}^{2}}+2a+1=5041$
= ${{(a+1)}^{2}}=5041$.
Therefore, taking under root on both sides
$(a+1)=\pm 71$ .
According to our assumption, $a=({{n}^{2}}+3n)$, so using this equation, we get
${{n}^{2}}+3n+1=\pm 71$, now we have two equations, ${{n}^{2}}+3n-70=0$ and ${{n}^{2}}+3n+72=0$. For equation ${{n}^{2}}+3n+72=0$, we get Discriminant, D, to be negative,
$D={{b}^{2}}-4ac$
$\begin{align}
& D=9-4\times 1\times 72 \\
& D=9-288 \\
& D=-279 \\
\end{align}$
therefore no real roots.
Hence only the equation ${{n}^{2}}+3n-70=0$ is left. Solving this equation, we get
$\begin{align}
& {{n}^{2}}+10n-7n-70=0 \\
& n\times (n+10)-7\times (n+10)=0 \\
& (n+10)\times (n-7)=0 \\
\end{align}$
Therefore, $n=7$ and $n=-10$. We know that -10 is not a natural number, therefore $n=7$ is the only solution for the given question. Hence, the consecutive numbers that satisfy the given equation are $n=7$, $n+1=8$, $n+2=9$, $n+3=10$ , that is, $7\times 8\times 9\times 10=5040$ .
Note: If we do not assume $a=({{n}^{2}}+3n)$ in the solution part then our calculation becomes more complex and the chances of error are increased. So, in order to reduce our effort we must proceed with the made assumption.Students should know the concept of discriminant to check whether roots are real or imaginary.To find discriminant we use ${D}^2={b}^2-4ac$, If $D>0$ and $D=0$ then roots are real and if $D < 0$ then roots are imaginary.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE