
The product of all values of $x$ which makes the following statement true. $\left( {{{\log }_3}x} \right)\left( {{{\log }_5}9} \right) - \left( {{{\log }_x}25} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}54} \right)$ is
Answer
465k+ views
Hint: In this question, we are given a logarithmic equation which we have to solve for all possible values of $x$ and then find the product of those values.
So, we will use properties of logarithmic functions to simplify the equation and find the value of $x$ .
We will use properties of a logarithmic function which will give us a quadratic equation, in $t$ say, (for simplicity) and then solve that equation for $t$ .
Then, we will substitute the value of $t$ in terms of $x$ , and then find the value of $x$ .
Formulae to be used:
$\log (ab) = \log a + \log b$
$\log {a^n} = n\log a$
${\log _a}b = \dfrac{1}{{{{\log }_b}a}}$
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
If ${x^n} = A$ , then ${\log _x}A = n$ .
Complete answer:
We are given a logarithmic equation: $\left( {{{\log }_3}x} \right)\left( {{{\log }_5}9} \right) - \left( {{{\log }_x}25} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}54} \right)$ .
To find and solve the equation for $x$ .
So, first we’ll write the given equation i.e., $\left( {{{\log }_3}x} \right)\left( {{{\log }_5}9} \right) - \left( {{{\log }_x}25} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}54} \right)$ .
We can write the equation as
$\left( {{{\log }_3}x} \right)\left( {{{\log }_5}{3^2}} \right) - \left( {{{\log }_x}{5^2}} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}{3^3} \cdot 2} \right)$ .
Now, using the identity $\log (ab) = \log a + \log b$ ,
we can write the equation as
$\left( {{{\log }_3}x} \right)\left( {{{\log }_5}{3^2}} \right) - \left( {{{\log }_x}{5^2}} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}{3^3}} \right) + {\log _3}2$ .
Now, using the identity $\log {a^n} = n\log a$ , we can write the equation as
$\left( {{{\log }_3}x} \right)\left( {2{{\log }_5}3} \right) - \left( {2{{\log }_x}5} \right) + \left( {{{\log }_3}2} \right) = \left( {3{{\log }_3}3} \right) + {\log _3}2$ .
Now, using the identity, ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ , we can write the above equation as
\[\dfrac{{\left( {\log x} \right)}}{{\left( {\log 3} \right)}} \times \dfrac{{2\log 3}}{{\log 5}} - \left( {2{{\log }_x}5} \right) + \left( {{{\log }_3}2} \right) = \left( {3{{\log }_3}3} \right) + {\log _3}2\] , canceling $\log 3$ by $\log 3$ gives,
$\dfrac{{2\log x}}{{\log 5}} - 2{\log _x}5 + {\log _3}2 = 3{\log _3}3 + {\log _3}2$ , and canceling ${\log _3}2$ by ${\log _3}2$ and we have ${\log _3}3 = 1$ , we get, $\dfrac{{2\log x}}{{\log 5}} - 2{\log _x}5 = 3{\log _3}3$ , i.e., $2{\log _5}x - 2{\log _x}5 = 3$ , which can be written as $2{\log _5}x - \dfrac{2}{{{{\log }_5}x}} - 3 = 0$ .
Now, let ${\log _5}x$ be $t$ , then the equation becomes, $2t - \dfrac{2}{t} - 3 = 0$ i.e., $2{t^2} - 3t - 4 = 0$ .
Now, solving the equation using the middle term split method gives, $t = - \dfrac{1}{2},2$ .
Substituting the value of $t$ , we get, ${\log _5}x = - \dfrac{1}{2},2$ .
Now, we know that if ${x^n} = A$ , then ${\log _x}A = n$ , so, we have that, $x = {5^{ - \dfrac{1}{2}}},{5^2}$ i.e., $x = \dfrac{1}{{\sqrt 5 }},25$ .
Hence,the product of the values $ = \dfrac{1}{{\sqrt 5 }} \times 25 = \dfrac{{5 \times 5}}{{\sqrt 5 }}$ i.e., $5\sqrt 5 $
Note: One must know all the properties of logarithmic function for solving such equations.
The quadratic equation can also be solved using the ‘Discriminant method’, in which, for a quadratic equation $a{x^2} + bx + c = 0$ , we have, $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ , on putting values of $a,b,c$ , we will get the same value for $x$ .
Canceling the same terms from each of the equality, is the same as subtracting the same terms from each side of the equality.
So, we will use properties of logarithmic functions to simplify the equation and find the value of $x$ .
We will use properties of a logarithmic function which will give us a quadratic equation, in $t$ say, (for simplicity) and then solve that equation for $t$ .
Then, we will substitute the value of $t$ in terms of $x$ , and then find the value of $x$ .
Formulae to be used:
$\log (ab) = \log a + \log b$
$\log {a^n} = n\log a$
${\log _a}b = \dfrac{1}{{{{\log }_b}a}}$
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
If ${x^n} = A$ , then ${\log _x}A = n$ .
Complete answer:
We are given a logarithmic equation: $\left( {{{\log }_3}x} \right)\left( {{{\log }_5}9} \right) - \left( {{{\log }_x}25} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}54} \right)$ .
To find and solve the equation for $x$ .
So, first we’ll write the given equation i.e., $\left( {{{\log }_3}x} \right)\left( {{{\log }_5}9} \right) - \left( {{{\log }_x}25} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}54} \right)$ .
We can write the equation as
$\left( {{{\log }_3}x} \right)\left( {{{\log }_5}{3^2}} \right) - \left( {{{\log }_x}{5^2}} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}{3^3} \cdot 2} \right)$ .
Now, using the identity $\log (ab) = \log a + \log b$ ,
we can write the equation as
$\left( {{{\log }_3}x} \right)\left( {{{\log }_5}{3^2}} \right) - \left( {{{\log }_x}{5^2}} \right) + \left( {{{\log }_3}2} \right) = \left( {{{\log }_3}{3^3}} \right) + {\log _3}2$ .
Now, using the identity $\log {a^n} = n\log a$ , we can write the equation as
$\left( {{{\log }_3}x} \right)\left( {2{{\log }_5}3} \right) - \left( {2{{\log }_x}5} \right) + \left( {{{\log }_3}2} \right) = \left( {3{{\log }_3}3} \right) + {\log _3}2$ .
Now, using the identity, ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ , we can write the above equation as
\[\dfrac{{\left( {\log x} \right)}}{{\left( {\log 3} \right)}} \times \dfrac{{2\log 3}}{{\log 5}} - \left( {2{{\log }_x}5} \right) + \left( {{{\log }_3}2} \right) = \left( {3{{\log }_3}3} \right) + {\log _3}2\] , canceling $\log 3$ by $\log 3$ gives,
$\dfrac{{2\log x}}{{\log 5}} - 2{\log _x}5 + {\log _3}2 = 3{\log _3}3 + {\log _3}2$ , and canceling ${\log _3}2$ by ${\log _3}2$ and we have ${\log _3}3 = 1$ , we get, $\dfrac{{2\log x}}{{\log 5}} - 2{\log _x}5 = 3{\log _3}3$ , i.e., $2{\log _5}x - 2{\log _x}5 = 3$ , which can be written as $2{\log _5}x - \dfrac{2}{{{{\log }_5}x}} - 3 = 0$ .
Now, let ${\log _5}x$ be $t$ , then the equation becomes, $2t - \dfrac{2}{t} - 3 = 0$ i.e., $2{t^2} - 3t - 4 = 0$ .
Now, solving the equation using the middle term split method gives, $t = - \dfrac{1}{2},2$ .
Substituting the value of $t$ , we get, ${\log _5}x = - \dfrac{1}{2},2$ .
Now, we know that if ${x^n} = A$ , then ${\log _x}A = n$ , so, we have that, $x = {5^{ - \dfrac{1}{2}}},{5^2}$ i.e., $x = \dfrac{1}{{\sqrt 5 }},25$ .
Hence,the product of the values $ = \dfrac{1}{{\sqrt 5 }} \times 25 = \dfrac{{5 \times 5}}{{\sqrt 5 }}$ i.e., $5\sqrt 5 $
Note: One must know all the properties of logarithmic function for solving such equations.
The quadratic equation can also be solved using the ‘Discriminant method’, in which, for a quadratic equation $a{x^2} + bx + c = 0$ , we have, $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ , on putting values of $a,b,c$ , we will get the same value for $x$ .
Canceling the same terms from each of the equality, is the same as subtracting the same terms from each side of the equality.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

