Answer
Verified
449.7k+ views
Hint: First of all, consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\]. Then find their product and simplify it further by using the formula in permutations to show that \[r!\] is a factor of \[r\] consecutive natural numbers to get the required answer.
Complete step-by-step answer:
Let us consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\] where \[n\] is the smallest natural number than the given \[r\] consecutive natural numbers.
Now, consider the product of these \[r\] consecutive natural numbers as
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\]
We know that \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
By using this formula, the product of \[r\] consecutive natural numbers are given by
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right) = \dfrac{{\left( {n + r} \right)!}}{{n!}}\]
Now, if it is true that prime factors in \[\left( {n + r} \right)!\] appear just as frequently or more as in \[n!r!\], then now for some integer \[k\] that \[\left( {n + r} \right)! = k \times n! \times r!\].
So, we have \[\dfrac{{\left( {n + r} \right)!}}{{n!}} = \dfrac{{k \times n! \times r!}}{{n!}} = k \times r!\]
Hence, the product of \[r\] consecutive natural numbers are \[\left( {n + r} \right)\left( {n + r - 1} \right)............................................\left( {n + 1} \right) = k \times r!\]
Clearly, the product of \[r\] consecutive natural numbers are divisible by \[r!\] as it is a factor of the product of the \[r\] consecutive natural numbers.
Hence, proved.
So, the correct answer is “Option A”.
Note: Consecutive natural numbers are natural numbers which follow each other in the order without any gaps, from smallest to largest. For example, \[1,2,3,............\]. To solve these kinds of problems always remember the formula \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
Complete step-by-step answer:
Let us consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\] where \[n\] is the smallest natural number than the given \[r\] consecutive natural numbers.
Now, consider the product of these \[r\] consecutive natural numbers as
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\]
We know that \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
By using this formula, the product of \[r\] consecutive natural numbers are given by
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right) = \dfrac{{\left( {n + r} \right)!}}{{n!}}\]
Now, if it is true that prime factors in \[\left( {n + r} \right)!\] appear just as frequently or more as in \[n!r!\], then now for some integer \[k\] that \[\left( {n + r} \right)! = k \times n! \times r!\].
So, we have \[\dfrac{{\left( {n + r} \right)!}}{{n!}} = \dfrac{{k \times n! \times r!}}{{n!}} = k \times r!\]
Hence, the product of \[r\] consecutive natural numbers are \[\left( {n + r} \right)\left( {n + r - 1} \right)............................................\left( {n + 1} \right) = k \times r!\]
Clearly, the product of \[r\] consecutive natural numbers are divisible by \[r!\] as it is a factor of the product of the \[r\] consecutive natural numbers.
Hence, proved.
So, the correct answer is “Option A”.
Note: Consecutive natural numbers are natural numbers which follow each other in the order without any gaps, from smallest to largest. For example, \[1,2,3,............\]. To solve these kinds of problems always remember the formula \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE