Answer
Verified
500.7k+ views
Hint- Null matrix is a matrix if all the elements of the matrix are zero. Multiplication of two matrices is given as a null matrix so the value of multiplication will be equal to Zero matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Given matrix are
$A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$, $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now find out the product of matrices i.e.$\left( {AB} \right)$
$\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]$
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta {{\cos }^2}\phi + \cos \theta \sin \theta \cos \phi \sin \phi }&{{{\cos }^2}\theta \cos \phi \sin \phi + \cos \theta \sin \theta {{\sin }^2}\phi } \\
{\cos \theta \sin \theta {{\cos }^2}\phi + {{\sin }^2}\theta \cos \phi \sin \phi }&{\cos \theta \sin \theta \cos \phi \sin \phi + {{\sin }^2}\theta {{\sin }^2}\phi }
\end{array}} \right]\]
Now this above matrix is also written as
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\cos \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)} \\
{\sin \theta \cos \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}&{\sin \theta \sin \phi \left( {\cos \theta \cos \phi + \sin \theta \sin \phi } \right)}
\end{array}} \right]\]
Now as we know $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ so use this property we have
\[\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right]\]
Now we have to convert the matrix to a null matrix, so we have to convert all the elements of the above matrix to zero.
Therefore substitute \[\cos \left( {\theta - \phi } \right) = 0\]………….. (1)
\[ \Rightarrow \left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\cos \theta \sin \phi \cos \left( {\theta - \phi } \right)} \\
{\sin \theta \cos \phi \cos \left( {\theta - \phi } \right)}&{\sin \theta \sin \phi \cos \left( {\theta - \phi } \right)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]\]
Now from equation (1)
We know that the value of cosine is zero for\[\left( {2n + 1} \right)\dfrac{\pi }{2}\], where \[n \in Z\]
\[\cos \left( {\theta - \phi } \right) = 0 = \cos \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], where \[n \in Z\]
So, on comparing
\[\left( {\theta - \phi } \right) = \left( {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right)\], \[n \in Z\]
Hence option (c) is correct.
Note- In such types of questions the key concept we have to remember is that the null matrix is a matrix such that all the elements of the matrix are zero, so in this questions first find out the matrix multiplication, then simplify the matrix using basic trigonometric properties which is stated above, then substitute one of the element to zero which is common in all the elements of the matrix AB, then use the property of cosine which is stated above, we will get the required null matrix.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE