Answer
Verified
450.6k+ views
Hint: We will assume the n consecutive numbers with the common assumption. Then we will rewrite them using some modifications and thus get the required answer.
Complete step-by-step solution:
We will solve this question starting with taking assumption numbers.
Let the n consecutive numbers to be k + 1, k + 2, ………. And the last one is k + n.
Now, let us see their product.
We will get: (k + 1)(k + 2)(k + 3)………..(k + n).
We can rewrite this product by multiplying and dividing the same by k! to get the following expression:-
$ \Rightarrow $ Product = $\dfrac{{k!(k + 1)(k + 2)........(k + n)}}{{k!}}$
Since we know that $n! = 1.2.3.......(n - 1).n$
Therefore, we will obtain:-
$ \Rightarrow $ Product = $\dfrac{{(k + n)!}}{{k!}}$
Let us now multiply and divide this by n! in order to get:-
$ \Rightarrow $ Product = $\dfrac{{n! \times (k + n)!}}{{n! \times k!}}$
Since we know that $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$.
So, we will get:-
$ \Rightarrow $ Product = $n!\left( {^{n + k}{C_n}} \right)$
Since we can clearly see that it has a factor of n! in it. Therefore, it must be definitely divisible by n!
$\therefore $ The correct option is (D).
Note: The students must commit to memory the following formulas:
$n! = 1.2.3.......(n - 1).n$
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
The students must keep in mind that they cannot just take n numbers as 1, 2 , 3 and so on up to n because that will be the first n consecutive natural numbers but in the question, we are not given any particular sequence, therefore, we must take arbitrary numbers. Taking k in addition makes them arbitrary because we can take any random value of k and thus get the required sequence of n consecutive natural numbers.
Complete step-by-step solution:
We will solve this question starting with taking assumption numbers.
Let the n consecutive numbers to be k + 1, k + 2, ………. And the last one is k + n.
Now, let us see their product.
We will get: (k + 1)(k + 2)(k + 3)………..(k + n).
We can rewrite this product by multiplying and dividing the same by k! to get the following expression:-
$ \Rightarrow $ Product = $\dfrac{{k!(k + 1)(k + 2)........(k + n)}}{{k!}}$
Since we know that $n! = 1.2.3.......(n - 1).n$
Therefore, we will obtain:-
$ \Rightarrow $ Product = $\dfrac{{(k + n)!}}{{k!}}$
Let us now multiply and divide this by n! in order to get:-
$ \Rightarrow $ Product = $\dfrac{{n! \times (k + n)!}}{{n! \times k!}}$
Since we know that $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$.
So, we will get:-
$ \Rightarrow $ Product = $n!\left( {^{n + k}{C_n}} \right)$
Since we can clearly see that it has a factor of n! in it. Therefore, it must be definitely divisible by n!
$\therefore $ The correct option is (D).
Note: The students must commit to memory the following formulas:
$n! = 1.2.3.......(n - 1).n$
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
The students must keep in mind that they cannot just take n numbers as 1, 2 , 3 and so on up to n because that will be the first n consecutive natural numbers but in the question, we are not given any particular sequence, therefore, we must take arbitrary numbers. Taking k in addition makes them arbitrary because we can take any random value of k and thus get the required sequence of n consecutive natural numbers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE