Answer
Verified
408.2k+ views
Hint: Use the fact that if n is odd, then n+1 is even and if n is even, then n+1 is odd. Use the fact that two consecutive integers are of form {n,n+1}. Think what happens when we multiply an odd integer and an even integer. Think whether the result will be even or odd. Alternatively use the fact that $^{n+1}{{C}_{2}}$ is an integer. Alternatively, you can use Euclid's division lemma to prove the result.
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence $^{n+1}{{C}_{2}}$ is an integer.
So let $^{n+1}{{C}_{2}}=k$
Hence, we have
$\begin{align}
& \dfrac{\left( n+1 \right)!}{2!\left( n-1 \right)!}=k \\
& \Rightarrow \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)!}{2\left( n-1 \right)!}=k \\
& \Rightarrow n\left( n+1 \right)=2k. \\
\end{align}$
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence $^{n+1}{{C}_{2}}$ is an integer.
So let $^{n+1}{{C}_{2}}=k$
Hence, we have
$\begin{align}
& \dfrac{\left( n+1 \right)!}{2!\left( n-1 \right)!}=k \\
& \Rightarrow \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)!}{2\left( n-1 \right)!}=k \\
& \Rightarrow n\left( n+1 \right)=2k. \\
\end{align}$
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE