
The product of two consecutive integers is always divisible by 2.
[a] True
[b] False.
Answer
435.8k+ views
6 likes
Hint: Use the fact that if n is odd, then n+1 is even and if n is even, then n+1 is odd. Use the fact that two consecutive integers are of form {n,n+1}. Think what happens when we multiply an odd integer and an even integer. Think whether the result will be even or odd. Alternatively use the fact that is an integer. Alternatively, you can use Euclid's division lemma to prove the result.
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence is an integer.
So let
Hence, we have
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Complete step-by-step answer:
Let the integers be n and n+1
We have either n is even, or n is odd
If n is even, we have n+1 is odd.
Now, we know that if c divides a, then c divides ab.
Since 2 divides n, we have 2 divides n(n+1).
Hence n(n+1) is divisible.
If n is odd:
Then we have n+1 is even.
Now since 2 divides n+1, hence 2 divides n(n+1).
Hence n(n+1) is even.
Hence in both the cases n(n+1) is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always even.
Hence the given statement is true.
Note: [1] Alternatively, we have
The number of ways in which 2 objects can be selected from n+1 objects is an integer.
Hence
So let
Hence, we have
Hence the product of two consecutive integers is divisible by 2.
Hence the product of two consecutive integers is even.
[2] Alternatively, we have
If n is an integer then by Euclid's division lemma, we have
n = 2q+r, where q is an integer and r = 0 or 1
Hence any integer is of one of the form 2q, 2q+1.
If n = 2q, then we have
n+1 = 2q+1
Hence n(n+1) = 2(q(2q+1)) which is even
If n = 2q+1, then we have
n+1 = 2q+2 = 2(q+1)
Hence n(n+1) = 2((2q+1)(q+1)), which is even.
Hence n(n+1) is always even.
Hence the product of two consecutive integers is always divisible by 2.
[3] product of r consecutive integers is divisible r!
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Where did Netaji set up the INA headquarters A Yangon class 10 social studies CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The British separated Burma Myanmar from India in 1935 class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility
