Answer
Verified
491.1k+ views
Hint: For solving this question we will first assume the two consecutive numbers to be $n,\left( n+1 \right)$ and then write their product in terms of the assumed variable. Then, we will get an equation as per the given data and then solve the equation to find the correct answer.
Complete step-by-step answer:
Given:
Two consecutive natural numbers whose product is 72.
Let, two consecutive natural numbers are $n$ and $\left( n+1 \right)$ .
Now, it is given that the product of the numbers is 72. Then,
$n\times \left( n+1 \right)=72$
Now, we have to solve the above equation to find the value of $n$ .
$\begin{align}
& n\times \left( n+1 \right)=72 \\
& {{n}^{2}}+n-72=0..........\left( 1 \right) \\
\end{align}$
Above equation is a quadratic equation. Now, we will solve this quadratic equation using splitting the middle term for which we have to find two numbers such that their product is -72 and sum is 1. Then, we will split the middle term of the quadratic equation to solve it.
From (1) we have,
$\begin{align}
& {{n}^{2}}+n-72=0 \\
& \Rightarrow {{n}^{2}}+9n-8n-72=0 \\
& \Rightarrow n\left( n+9 \right)-8\left( n+9 \right)=0 \\
& \Rightarrow \left( n+9 \right)\left( n-8 \right)=0 \\
& \Rightarrow n=-9,8 \\
\end{align}$
We have solved the equation and got two values of $n$ that are -9 and 8. But we will consider only the positive values for our solution because it is given that $n$ is a natural number, so it can not be negative and it should be greater than 1.
Now, one of the required natural numbers is $n=8$ . Then, according to our assumption, another number is $n+1=9$ .
Thus, the required two consecutive natural numbers are 8 and 9.
Note: The problem was very easy to solve but one should know how to solve quadratic equations using splitting the middle term technique. Moreover, the student should be careful while splitting the middle term and proceed correctly.
Complete step-by-step answer:
Given:
Two consecutive natural numbers whose product is 72.
Let, two consecutive natural numbers are $n$ and $\left( n+1 \right)$ .
Now, it is given that the product of the numbers is 72. Then,
$n\times \left( n+1 \right)=72$
Now, we have to solve the above equation to find the value of $n$ .
$\begin{align}
& n\times \left( n+1 \right)=72 \\
& {{n}^{2}}+n-72=0..........\left( 1 \right) \\
\end{align}$
Above equation is a quadratic equation. Now, we will solve this quadratic equation using splitting the middle term for which we have to find two numbers such that their product is -72 and sum is 1. Then, we will split the middle term of the quadratic equation to solve it.
From (1) we have,
$\begin{align}
& {{n}^{2}}+n-72=0 \\
& \Rightarrow {{n}^{2}}+9n-8n-72=0 \\
& \Rightarrow n\left( n+9 \right)-8\left( n+9 \right)=0 \\
& \Rightarrow \left( n+9 \right)\left( n-8 \right)=0 \\
& \Rightarrow n=-9,8 \\
\end{align}$
We have solved the equation and got two values of $n$ that are -9 and 8. But we will consider only the positive values for our solution because it is given that $n$ is a natural number, so it can not be negative and it should be greater than 1.
Now, one of the required natural numbers is $n=8$ . Then, according to our assumption, another number is $n+1=9$ .
Thus, the required two consecutive natural numbers are 8 and 9.
Note: The problem was very easy to solve but one should know how to solve quadratic equations using splitting the middle term technique. Moreover, the student should be careful while splitting the middle term and proceed correctly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE