Answer
Verified
480.9k+ views
Hint: For solving this question we will first assume the two consecutive numbers to be $n,\left( n+1 \right)$ and then write their product in terms of the assumed variable. Then, we will get an equation as per the given data and then solve the equation to find the correct answer.
Complete step-by-step answer:
Given:
Two consecutive natural numbers whose product is 72.
Let, two consecutive natural numbers are $n$ and $\left( n+1 \right)$ .
Now, it is given that the product of the numbers is 72. Then,
$n\times \left( n+1 \right)=72$
Now, we have to solve the above equation to find the value of $n$ .
$\begin{align}
& n\times \left( n+1 \right)=72 \\
& {{n}^{2}}+n-72=0..........\left( 1 \right) \\
\end{align}$
Above equation is a quadratic equation. Now, we will solve this quadratic equation using splitting the middle term for which we have to find two numbers such that their product is -72 and sum is 1. Then, we will split the middle term of the quadratic equation to solve it.
From (1) we have,
$\begin{align}
& {{n}^{2}}+n-72=0 \\
& \Rightarrow {{n}^{2}}+9n-8n-72=0 \\
& \Rightarrow n\left( n+9 \right)-8\left( n+9 \right)=0 \\
& \Rightarrow \left( n+9 \right)\left( n-8 \right)=0 \\
& \Rightarrow n=-9,8 \\
\end{align}$
We have solved the equation and got two values of $n$ that are -9 and 8. But we will consider only the positive values for our solution because it is given that $n$ is a natural number, so it can not be negative and it should be greater than 1.
Now, one of the required natural numbers is $n=8$ . Then, according to our assumption, another number is $n+1=9$ .
Thus, the required two consecutive natural numbers are 8 and 9.
Note: The problem was very easy to solve but one should know how to solve quadratic equations using splitting the middle term technique. Moreover, the student should be careful while splitting the middle term and proceed correctly.
Complete step-by-step answer:
Given:
Two consecutive natural numbers whose product is 72.
Let, two consecutive natural numbers are $n$ and $\left( n+1 \right)$ .
Now, it is given that the product of the numbers is 72. Then,
$n\times \left( n+1 \right)=72$
Now, we have to solve the above equation to find the value of $n$ .
$\begin{align}
& n\times \left( n+1 \right)=72 \\
& {{n}^{2}}+n-72=0..........\left( 1 \right) \\
\end{align}$
Above equation is a quadratic equation. Now, we will solve this quadratic equation using splitting the middle term for which we have to find two numbers such that their product is -72 and sum is 1. Then, we will split the middle term of the quadratic equation to solve it.
From (1) we have,
$\begin{align}
& {{n}^{2}}+n-72=0 \\
& \Rightarrow {{n}^{2}}+9n-8n-72=0 \\
& \Rightarrow n\left( n+9 \right)-8\left( n+9 \right)=0 \\
& \Rightarrow \left( n+9 \right)\left( n-8 \right)=0 \\
& \Rightarrow n=-9,8 \\
\end{align}$
We have solved the equation and got two values of $n$ that are -9 and 8. But we will consider only the positive values for our solution because it is given that $n$ is a natural number, so it can not be negative and it should be greater than 1.
Now, one of the required natural numbers is $n=8$ . Then, according to our assumption, another number is $n+1=9$ .
Thus, the required two consecutive natural numbers are 8 and 9.
Note: The problem was very easy to solve but one should know how to solve quadratic equations using splitting the middle term technique. Moreover, the student should be careful while splitting the middle term and proceed correctly.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE