
The product of two consecutive positive odd numbers is 195. Find the numbers.
Answer
621.6k+ views
Hint: Assume the numbers as some variables. Frame the equation using the condition given in the question and solve it.
As per the question, let the two positive consecutive odd numbers be $x - 1$ and $x + 1$.
The product of the numbers is given as 196. So, we have:
$ \Rightarrow \left( {x - 1} \right)\left( {x + 1} \right) = 195$
As we know that $\left( {x - a} \right)\left( {x + a} \right) = {x^2} - {a^2}$. Using this formula, we’ll get:
$
\Rightarrow {x^2} - 1 = 195, \\
\Rightarrow {x^2} = 196, \\
\Rightarrow x = \pm \sqrt {196} , \\
\Rightarrow x = \pm 14 \\
$
But we have to consider only positive integers, so we will ignore negative values. $x = 14$ is the valid solution.
$x - 1 = 13{\text{ and }}x + 1 = 15$
Therefore our numbers are 13 and 15.
Note: We can also assume numbers to be $x$ and $x + 2$. In that case, we will get a different quadratic equation but the end result will be the same.
As per the question, let the two positive consecutive odd numbers be $x - 1$ and $x + 1$.
The product of the numbers is given as 196. So, we have:
$ \Rightarrow \left( {x - 1} \right)\left( {x + 1} \right) = 195$
As we know that $\left( {x - a} \right)\left( {x + a} \right) = {x^2} - {a^2}$. Using this formula, we’ll get:
$
\Rightarrow {x^2} - 1 = 195, \\
\Rightarrow {x^2} = 196, \\
\Rightarrow x = \pm \sqrt {196} , \\
\Rightarrow x = \pm 14 \\
$
But we have to consider only positive integers, so we will ignore negative values. $x = 14$ is the valid solution.
$x - 1 = 13{\text{ and }}x + 1 = 15$
Therefore our numbers are 13 and 15.
Note: We can also assume numbers to be $x$ and $x + 2$. In that case, we will get a different quadratic equation but the end result will be the same.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

