
The radius of a circle is 5 cm. Find the area of sector formed by the arc of this circle of length 3.5 cm.
Answer
585.6k+ views
Hint: We are given the radius of the circle as 5 cm and the length of the arc is 3.5 cm. If the length of the arc is $l$ cm and radius of circle is $r$cm, then the area of the sector formed is given by $\dfrac{{lr}}{2}$. Substitute the values of $l$ and $r$ to calculate the area of the sector.
Complete step-by-step answer:
Given the radius of the circle is 5 cm.
The arc is the part of the circumference.
The portion formed by an arc of a circle along with its two radii is known as the sector of the circle.
The area of a sector is given by the formula, $\dfrac{{lr}}{2}$, where $l$ is the length of an arc and $r$ is the radius of the circle.
On, substituting the values of $l$ and $r$, we get
$A = \dfrac{{\left( {3.5} \right)\left( 5 \right)}}{2}$
On solving the expression, we get,
$A = \dfrac{{17.5}}{2}$
Thus the area of the sector of length 3.5 cm formed by the circle of radius 5 cm is 8.75 ${\text{c}}{{\text{m}}^2}$.
Note:- The area of the sector of the circle is given by, $\dfrac{{lr}}{2}$ where $l$ is the length of an arc and $r$ is the radius of the circle. If angle between the sector is given, the area of the sector of the circle can also be calculated using the formula, $\dfrac{\theta }{{360}} \times \pi {r^2}$, where $\theta $ is the angle of the sector.
Complete step-by-step answer:
Given the radius of the circle is 5 cm.
The arc is the part of the circumference.
The portion formed by an arc of a circle along with its two radii is known as the sector of the circle.
The area of a sector is given by the formula, $\dfrac{{lr}}{2}$, where $l$ is the length of an arc and $r$ is the radius of the circle.
On, substituting the values of $l$ and $r$, we get
$A = \dfrac{{\left( {3.5} \right)\left( 5 \right)}}{2}$
On solving the expression, we get,
$A = \dfrac{{17.5}}{2}$
Thus the area of the sector of length 3.5 cm formed by the circle of radius 5 cm is 8.75 ${\text{c}}{{\text{m}}^2}$.
Note:- The area of the sector of the circle is given by, $\dfrac{{lr}}{2}$ where $l$ is the length of an arc and $r$ is the radius of the circle. If angle between the sector is given, the area of the sector of the circle can also be calculated using the formula, $\dfrac{\theta }{{360}} \times \pi {r^2}$, where $\theta $ is the angle of the sector.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

