
The radius of curvature of a spherical mirror is cm. What is its focal length ?
Answer
433.5k+ views
Hint:The radius of curvature of a spherical mirror is basically the radius or the distance between the centre to the circumference of the circle of which the spherical mirror is the part of. It is twice the focal length.
Complete step by step answer:
Spherical mirror is nothing but mirrors in sphere shape or can be said to be in a circle.Spherical mirrors is of two types:
-If the reflecting surface is the outer side of the sphere, the mirror is called a convex mirror.
-If the inside surface is the reflecting surface, it is called a concave mirror.
In the question given that,
Radius of curvature, R = cm
Radius of curvature of a spherical mirror = Focal length (f)
By putting the values we get
The focal length of the given spherical mirror is . The distance between the pole(P) of a mirror and the focal point(F) of a mirror is the focal length. It is donated by the symbol f(small f).
The relation between focal length and radius of curvature is proportional as given above radius of curvature is twice of focal length. The rays of light having a single frequency which are traveling in a straight line parallel to the optical axis that is O will meet at the focal point.But the rays of Light which are parallel to each other, but not to the optical axis, will meet on the focal plane.
Hence, the focal length of a spherical mirror is 10 cm.
Note: A spherical mirror has two surfaces one is the polished reflecting surface other is the coated opaque surface depending on which side is reflecting. Depending upon the type of reflecting surface we have concave and convex mirrors.
Complete step by step answer:
Spherical mirror is nothing but mirrors in sphere shape or can be said to be in a circle.Spherical mirrors is of two types:
-If the reflecting surface is the outer side of the sphere, the mirror is called a convex mirror.
-If the inside surface is the reflecting surface, it is called a concave mirror.
In the question given that,
Radius of curvature, R =
Radius of curvature of a spherical mirror =
By putting the values we get
The focal length of the given spherical mirror is
The relation between focal length and radius of curvature is proportional as given above radius of curvature is twice of focal length. The rays of light having a single frequency which are traveling in a straight line parallel to the optical axis that is O will meet at the focal point.But the rays of Light which are parallel to each other, but not to the optical axis, will meet on the focal plane.
Hence, the focal length of a spherical mirror is 10 cm.
Note: A spherical mirror has two surfaces one is the polished reflecting surface other is the coated opaque surface depending on which side is reflecting. Depending upon the type of reflecting surface we have concave and convex mirrors.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Where did Netaji set up the INA headquarters A Yangon class 10 social studies CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The British separated Burma Myanmar from India in 1935 class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Chandigarh is the capital of A Punjab B Haryana C Punjab class 10 social science CBSE
