
The radius of gyration of a uniform rod of length l, about an axis passing through a point 1/4 away from the centre of rod, and perpendicular to it, is:
(A)
(B)
(C)
(D)
Answer
402.6k+ views
1 likes
Hint: In order to answer this question, we need to understand that the radius of gyration is defined as the distance between the axis of rotation and the point where the total mass of the body is supposed to be concentrated. So, to find the radius of gyration, we can use the direct formula for the radius of gyration which is dependent on the moment of inertia and mass of the rod. Initially, calculate the moment of inertia using its formula and then substitute it in the formula for radius of gyration. This obtained value will be the radius of gyration of the rod of mass m and length 2l.
Complete step by step solution:
The moment of inertia (MOI) of any uniform rod of length l and mass M about an axis through the centre and forming a 90-degree angle to the length is shown as:
moment of inertia about c,
Using Parallel axis theorem:
The parallel axis theorem states that, the moment of inertia of a body about any axis is equal to the moment of inertia about parallel axis through its center of mass plus the product of the mass of the body and the square of the perpendicular distance between the two parallel axes.
Substituting the value of ,
Let K is the radius of gyration.
Hence the correct option is (A).
Note:
It should be remembered that the radius of gyration depends on size and shape of the body. The body mass distribution of the object with respect to the rotational axis also influences the value of radius of gyration. If the body is close to the axis of rotation, then the value for radius of gyration will be less. If the body is away from the axis of rotation, then the value for the radius of gyration will be high. It’s S.I unit is meter.
Complete step by step solution:
The moment of inertia (MOI) of any uniform rod of length l and mass M about an axis through the centre and forming a 90-degree angle to the length is shown as:
moment of inertia about c,

Using Parallel axis theorem:
The parallel axis theorem states that, the moment of inertia of a body about any axis is equal to the moment of inertia about parallel axis through its center of mass plus the product of the mass of the body and the square of the perpendicular distance between the two parallel axes.
Substituting the value of
Let K is the radius of gyration.
Hence the correct option is (A).
Note:
It should be remembered that the radius of gyration depends on size and shape of the body. The body mass distribution of the object with respect to the rotational axis also influences the value of radius of gyration. If the body is close to the axis of rotation, then the value for radius of gyration will be less. If the body is away from the axis of rotation, then the value for the radius of gyration will be high. It’s S.I unit is meter.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
