
The radius of the stationary state which is also called Bohr radius is given by the expression $\text{ }{{\text{r}}_{\text{n}}}={{\text{n}}^{2}}{{\text{a}}_{0}}\text{ }$ where the value of $\text{ }{{\text{a}}_{0}}\text{ }$is:
A) $\text{ 52}\text{.9 pm }$
B) $\text{ 5}\text{.29 pm }$
C) $\text{ 529 pm }$
D) $\text{ 0}\text{.529 pm }$
Answer
561.6k+ views
Hint: We will solve this question by using the given expression of the radius of the stationary state; it is used for the hydrogen atom and hydrogen-like species. We know Bohr’s theory was valid for hydrogen and similar species. The radius of the orbitals is related to the energy level, a charge of the electron. The $\text{ }{{\text{a}}_{0}}\text{ }$ is proportionality constant.
Complete Solution :
Now, the expression given in the question is used for the hydrogen atom, and also termed as Bohr’s radius i.e. $\text{ }{{\text{r}}_{\text{n}}}={{\text{n}}^{2}}{{\text{a}}_{0}}\text{ }$
Thus, we will write the expression for the radius of hydrogen-like particles in their stationary state, and it can be written as:
$\text{ }{{\text{r}}_{\text{n}}}={{\text{n}}^{2}}\dfrac{{{\text{a}}_{0}}}{\text{Z}}\text{ }$
Here we have n represents the \[{{\text{n}}^{\text{th}}}\] Bohr orbit, Z represents the atomic number, and $\text{ }{{\text{a}}_{0}}\text{ }$ represents the radius of the first stationary state, that remains the same in each case.
The above equation can be modified to determine the value $\text{ }{{\text{a}}_{0}}\text{ }$. The equation is,
$\text{ }{{\text{a}}_{0}}=\text{ }\dfrac{{{\text{r}}_{\text{n}}}Z}{{{\text{n}}^{2}}}\text{ }$ (1)
- To determine the value of $\text{ }{{\text{a}}_{0}}\text{ }$, the radius of the first stationary state can be calculated for the hydrogen atom. The hydrogen atom has the atomic number ‘Z’ equal to 1 and the atom has the one energy level $\text{ ( 1s ) }$ . Let's substitute the values in the (1) equation. we have,
$\text{ }{{\text{a}}_{0}}=\text{ }\dfrac{{{\text{r}}_{\text{n}}}Z}{{{\text{n}}^{2}}}\text{ = }\dfrac{{{\text{r}}_{\text{n}}}(1)}{{{(1)}^{2}}}\text{ = }{{\text{r}}_{\text{n}}}\text{ }$
Thus, the hydrogen atom $\text{ }{{\text{a}}_{0}}\text{ }$ is equal to the $\text{ }{{\text{r}}_{\text{n}}}\text{ }$ value.
Thus from the Bohr radius equation, the value of $\text{ }{{\text{a}}_{0}}\text{ }$can be determined as,
$\begin{align}
& \text{ }{{\text{r}}_{\text{n}}}\text{ }=\text{ }{{\text{a}}_{\text{0}}}\text{ = }\dfrac{{{h}^{2}}4\pi {{\varepsilon }_{0}}}{4{{\pi }^{\text{2}}}{{\text{m}}_{\text{e}}}{{\text{e}}^{\text{2}}}}\text{ } \\
& \Rightarrow {{\text{a}}_{\text{0}}}=\text{ }\dfrac{\left( 1.112\times {{10}^{-10}}\text{ }{{\text{C}}^{\text{2}}}{{\text{N}}^{-1}}{{\text{m}}^{-2}} \right){{\left( 6.626\times {{10}^{-34}}Js \right)}^{2}}}{4{{\pi }^{\text{2}}}\left( 9.109\times {{10}^{-31}}\text{kg} \right){{\left( 1.602\times {{10}^{-19}}\text{C} \right)}^{2}}}\text{ = }\frac{4.917\times {{10}^{-77}}}{9.219\times {{10}^{-67}}}=0.529\times {{10}^{-10}}\text{m } \\
\end{align}$
- Where h is the planck's constant $\text{ }6.626\times {{10}^{-34}}Js\text{ }$
$\text{ }4\pi {{\varepsilon }_{0}}\text{ }$, is a permittivity factor and its value is equal to $\text{ }1.112\times {{10}^{-10}}\text{ }{{\text{C}}^{\text{2}}}{{\text{N}}^{-1}}{{\text{m}}^{-2}}\text{ }$
$\text{ }{{\text{m}}_{\text{e}}}\text{ }$, is the mass of an electron $\text{ }9.109\times {{10}^{-31}}\text{kg }$
Charge on the electron is ‘e’ is $\text{ }1.602\times {{10}^{-19}}\text{C }$
- So, we can say that the value of $\text{ }{{\text{a}}_{0}}\text{ }$ is $\text{ }0.529\times {{10}^{-10}}\text{m }$ or in the picometer it is equal to $\text{ 52}\text{.9 pm }$.
So, the correct answer is “Option A”.
Note: Note that, the radii of the stationary state mean the first energy level where the value of n is 1. It also means that the energy of the first level will be lowest as it is nearer to the nucleus. The value of radii will be the same for hydrogen-like atoms, moreover in the case of atomic number 1.
Complete Solution :
Now, the expression given in the question is used for the hydrogen atom, and also termed as Bohr’s radius i.e. $\text{ }{{\text{r}}_{\text{n}}}={{\text{n}}^{2}}{{\text{a}}_{0}}\text{ }$
Thus, we will write the expression for the radius of hydrogen-like particles in their stationary state, and it can be written as:
$\text{ }{{\text{r}}_{\text{n}}}={{\text{n}}^{2}}\dfrac{{{\text{a}}_{0}}}{\text{Z}}\text{ }$
Here we have n represents the \[{{\text{n}}^{\text{th}}}\] Bohr orbit, Z represents the atomic number, and $\text{ }{{\text{a}}_{0}}\text{ }$ represents the radius of the first stationary state, that remains the same in each case.
The above equation can be modified to determine the value $\text{ }{{\text{a}}_{0}}\text{ }$. The equation is,
$\text{ }{{\text{a}}_{0}}=\text{ }\dfrac{{{\text{r}}_{\text{n}}}Z}{{{\text{n}}^{2}}}\text{ }$ (1)
- To determine the value of $\text{ }{{\text{a}}_{0}}\text{ }$, the radius of the first stationary state can be calculated for the hydrogen atom. The hydrogen atom has the atomic number ‘Z’ equal to 1 and the atom has the one energy level $\text{ ( 1s ) }$ . Let's substitute the values in the (1) equation. we have,
$\text{ }{{\text{a}}_{0}}=\text{ }\dfrac{{{\text{r}}_{\text{n}}}Z}{{{\text{n}}^{2}}}\text{ = }\dfrac{{{\text{r}}_{\text{n}}}(1)}{{{(1)}^{2}}}\text{ = }{{\text{r}}_{\text{n}}}\text{ }$
Thus, the hydrogen atom $\text{ }{{\text{a}}_{0}}\text{ }$ is equal to the $\text{ }{{\text{r}}_{\text{n}}}\text{ }$ value.
Thus from the Bohr radius equation, the value of $\text{ }{{\text{a}}_{0}}\text{ }$can be determined as,
$\begin{align}
& \text{ }{{\text{r}}_{\text{n}}}\text{ }=\text{ }{{\text{a}}_{\text{0}}}\text{ = }\dfrac{{{h}^{2}}4\pi {{\varepsilon }_{0}}}{4{{\pi }^{\text{2}}}{{\text{m}}_{\text{e}}}{{\text{e}}^{\text{2}}}}\text{ } \\
& \Rightarrow {{\text{a}}_{\text{0}}}=\text{ }\dfrac{\left( 1.112\times {{10}^{-10}}\text{ }{{\text{C}}^{\text{2}}}{{\text{N}}^{-1}}{{\text{m}}^{-2}} \right){{\left( 6.626\times {{10}^{-34}}Js \right)}^{2}}}{4{{\pi }^{\text{2}}}\left( 9.109\times {{10}^{-31}}\text{kg} \right){{\left( 1.602\times {{10}^{-19}}\text{C} \right)}^{2}}}\text{ = }\frac{4.917\times {{10}^{-77}}}{9.219\times {{10}^{-67}}}=0.529\times {{10}^{-10}}\text{m } \\
\end{align}$
- Where h is the planck's constant $\text{ }6.626\times {{10}^{-34}}Js\text{ }$
$\text{ }4\pi {{\varepsilon }_{0}}\text{ }$, is a permittivity factor and its value is equal to $\text{ }1.112\times {{10}^{-10}}\text{ }{{\text{C}}^{\text{2}}}{{\text{N}}^{-1}}{{\text{m}}^{-2}}\text{ }$
$\text{ }{{\text{m}}_{\text{e}}}\text{ }$, is the mass of an electron $\text{ }9.109\times {{10}^{-31}}\text{kg }$
Charge on the electron is ‘e’ is $\text{ }1.602\times {{10}^{-19}}\text{C }$
- So, we can say that the value of $\text{ }{{\text{a}}_{0}}\text{ }$ is $\text{ }0.529\times {{10}^{-10}}\text{m }$ or in the picometer it is equal to $\text{ 52}\text{.9 pm }$.
So, the correct answer is “Option A”.
Note: Note that, the radii of the stationary state mean the first energy level where the value of n is 1. It also means that the energy of the first level will be lowest as it is nearer to the nucleus. The value of radii will be the same for hydrogen-like atoms, moreover in the case of atomic number 1.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

