Answer
Verified
431.4k+ views
Hint:Specific heat capacity is the amount of heat required to raise the temperature of the unit mass of a substance through one degree. Its units are \[cal/{g^ \circ }C\] . Molar heat capacity of a body is the amount of heat required to raise the temperature of 1 mole of a substance through \[1K\]. Its units are \[J/molK\]. Taking the ratio of their units will help give the answer.
Formula Used:
The units of Specific heat capacity are: \[4.2 \times {10^3}J/kgK\]
The units of Molar heat capacity are \[J/molK\].
Complete step by step answer:
The branch of heat which deals with measurement of heat is called calorimetry. The SI unit of heat is Joule. Calorie is also a unit of heat. Calorie or \[cal\] is actually defined as the amount of heat required to raise the temperature of \[1g\] of water through \[{1^ \circ }C\].Kilocalorie or \[kcal\] is the amount of heat required to raise the temperature of \[1kg\] of water by\[{1^ \circ }C\]. Relation between Joule and calorie is given by
\[1cal = 4.2Joule\] \[ \to (1)\]
Specific heat capacity is the amount of heat required to raise the temperature of the unit mass of a substance through one degree. It can be expressed as \[cal/{g^ \circ }C\] or \[kcal/k{g^ \circ }C\]. Therefore, from equation (1), the specific heat capacity can also be expressed as \[4.2 \times {10^3}J/kgK\].
Molar heat capacity of a body or Molar specific heat is the amount of heat required to raise the temperature of 1 mole of a substance through \[1K\]. Its unit is \[J/molK\].If the ratio the units of specific heat capacity to molar heat capacity is taken, then
\[\dfrac{{4.2 \times {{10}^3}J/kgK}}{{J/molK}} = 4.2 \times{10^3}.\dfrac{J}{{kgK}}.\dfrac{{molK}}{J} \\
\therefore\dfrac{{4.2 \times {{10}^3}J/kgK}}{{J/molK}} = 4.2 \times {10^3}\dfrac{{mol}}{{kg}}\]
The ratio \[\dfrac{{mol}}{{kg}}\] is known as molality. Molality is a measure of the number of moles of solute present in 1 kg of solvent. It represents the molar concentration of a solution. Therefore, the ratio of specific heat capacity to molar heat capacity of a body depends on the molecular weight of the body.
Hence, option C is the correct answer.
Note:Molar heat capacity of a body is also referred to as Molar specific heat. For the gases, molar specific is defined at constant volume and constant pressure.For international use, the Calorie is defined as the amount of heat required to raise the temperature of \[1g\] of water from \[{14.5^ \circ }C\] to \[{15.5^ \circ }C\].
Formula Used:
The units of Specific heat capacity are: \[4.2 \times {10^3}J/kgK\]
The units of Molar heat capacity are \[J/molK\].
Complete step by step answer:
The branch of heat which deals with measurement of heat is called calorimetry. The SI unit of heat is Joule. Calorie is also a unit of heat. Calorie or \[cal\] is actually defined as the amount of heat required to raise the temperature of \[1g\] of water through \[{1^ \circ }C\].Kilocalorie or \[kcal\] is the amount of heat required to raise the temperature of \[1kg\] of water by\[{1^ \circ }C\]. Relation between Joule and calorie is given by
\[1cal = 4.2Joule\] \[ \to (1)\]
Specific heat capacity is the amount of heat required to raise the temperature of the unit mass of a substance through one degree. It can be expressed as \[cal/{g^ \circ }C\] or \[kcal/k{g^ \circ }C\]. Therefore, from equation (1), the specific heat capacity can also be expressed as \[4.2 \times {10^3}J/kgK\].
Molar heat capacity of a body or Molar specific heat is the amount of heat required to raise the temperature of 1 mole of a substance through \[1K\]. Its unit is \[J/molK\].If the ratio the units of specific heat capacity to molar heat capacity is taken, then
\[\dfrac{{4.2 \times {{10}^3}J/kgK}}{{J/molK}} = 4.2 \times{10^3}.\dfrac{J}{{kgK}}.\dfrac{{molK}}{J} \\
\therefore\dfrac{{4.2 \times {{10}^3}J/kgK}}{{J/molK}} = 4.2 \times {10^3}\dfrac{{mol}}{{kg}}\]
The ratio \[\dfrac{{mol}}{{kg}}\] is known as molality. Molality is a measure of the number of moles of solute present in 1 kg of solvent. It represents the molar concentration of a solution. Therefore, the ratio of specific heat capacity to molar heat capacity of a body depends on the molecular weight of the body.
Hence, option C is the correct answer.
Note:Molar heat capacity of a body is also referred to as Molar specific heat. For the gases, molar specific is defined at constant volume and constant pressure.For international use, the Calorie is defined as the amount of heat required to raise the temperature of \[1g\] of water from \[{14.5^ \circ }C\] to \[{15.5^ \circ }C\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE