
The ratio of \[\tan {60^0}\] and \[\cot {60^0}\] is
Answer
614.1k+ views
- Hint: The ratio of \[x\] and \[y\] is given by \[\dfrac{x}{y}\]. Then convert the terms of cot into tan by using simple trigonometric ratios. So, use this concept to reach the solution of the given problem.
Complete step-by-step solution -
The ratio of \[\tan {60^0}\] and \[\cot {60^0}\] is given by \[\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}}\].
By using the formula \[\cot x = \dfrac{1}{{\tan x}}\], we have
\[
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\tan {{60}^0}}}{{\dfrac{1}{{\tan {{60}^0}}}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \tan {60^0} \times \tan {60^0} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\tan {{60}^0}} \right)^2} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\tan ^2}{60^0} \\
\]
We know that \[\tan {60^0} = \sqrt 3 \]
\[\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\sqrt 3 } \right)^2} = 3\]
Thus, the ratio of \[\tan {60^0}\] and \[\cot {60^0}\] is 3.
Note: Remember all that the conversions of trigonometric ratios are the angles of the first quadrant only. We can solve this problem by another method which is given by
\[
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}}}}{{\dfrac{{\cos {{60}^0}}}{{\sin {{60}^0}}}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}} \times \dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}}} \right)^2} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\tan {{60}^0}} \right)^2} \\
\therefore \dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\sqrt 3 } \right)^2} = 3 \\
\]
Complete step-by-step solution -
The ratio of \[\tan {60^0}\] and \[\cot {60^0}\] is given by \[\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}}\].
By using the formula \[\cot x = \dfrac{1}{{\tan x}}\], we have
\[
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\tan {{60}^0}}}{{\dfrac{1}{{\tan {{60}^0}}}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \tan {60^0} \times \tan {60^0} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\tan {{60}^0}} \right)^2} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\tan ^2}{60^0} \\
\]
We know that \[\tan {60^0} = \sqrt 3 \]
\[\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\sqrt 3 } \right)^2} = 3\]
Thus, the ratio of \[\tan {60^0}\] and \[\cot {60^0}\] is 3.
Note: Remember all that the conversions of trigonometric ratios are the angles of the first quadrant only. We can solve this problem by another method which is given by
\[
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}}}}{{\dfrac{{\cos {{60}^0}}}{{\sin {{60}^0}}}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = \dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}} \times \dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\dfrac{{\sin {{60}^0}}}{{\cos {{60}^0}}}} \right)^2} \\
\dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\tan {{60}^0}} \right)^2} \\
\therefore \dfrac{{\tan {{60}^0}}}{{\cot {{60}^0}}} = {\left( {\sqrt 3 } \right)^2} = 3 \\
\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

