The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Answer
Verified
476.4k+ views
Hint:
First, we will calculate the area of two similar triangles and then divide them. Then the similarities of two triangles are used to find the ratios of the corresponding sides.
Complete step by step solution:
Let us assume the two triangles are \[\Delta {\text{PQR}}\] and \[\Delta {\text{ABC}}\].
We will use the formula to find the area of triangle, \[{\text{Area = }}\dfrac{1}{2} \times {\text{Base}} \times {\text{Height}}\].
Now, we will find the area of the triangles \[\Delta {\text{ABC}}\] and \[\Delta {\text{PQR}}\] from the above diagram.
\[{\text{Area of }}\Delta {\text{PQR}} = \dfrac{1}{2} \times {\text{QR}} \times {\text{PS ......}}\left( 1 \right)\]
\[{\text{Area of }}\Delta {\text{ABC}} = \dfrac{1}{2} \times {\text{BC}} \times {\text{AD ......}}\left( 2 \right)\]
Dividing \[\left( 1 \right)\] by \[\left( 2 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{\dfrac{1}{2} \times {\text{QR}} \times {\text{PS}}}}{{\dfrac{1}{2} \times {\text{BC}} \times {\text{AD}}}} \\
= \dfrac{{{\text{QR}} \times {\text{PS}}}}{{{\text{BC}} \times {\text{AD}}}}{\text{ ......}}\left( 3 \right) \\
\]
Since we know that \[\angle {\text{ABC}}\] and \[\angle {\text{PQR}}\] are angles of similar triangles, so \[\angle {\text{ABC}} = \angle {\text{PQR}}\] and both right angled triangles \[\angle {\text{ADB}}\] and \[\angle {\text{PSQ}}\] are equal.
Therefore, \[\Delta {\text{PQS}} \sim \Delta {\text{ABD}}\].
\[ \Rightarrow \dfrac{{{\text{PS}}}}{{{\text{AD}}}} = \dfrac{{{\text{PQ}}}}{{{\text{AB}}}}{\text{ ......}}\left( 4 \right)\]
Substituting this value in equation \[\left( 3 \right)\], we get
\[\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \times \dfrac{{{\text{PQ}}}}{{{\text{AB}}}}{\text{ ......}}\left( 5 \right)\]
Since we know that the triangles \[\Delta {\text{PQR}}\] and \[\Delta {\text{ABC}}\] are similar,
\[\dfrac{{{\text{PQ}}}}{{{\text{AB}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} = \dfrac{{{\text{PR}}}}{{{\text{AC}}}}\]
Using this value in equation \[\left( 5 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \times \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \\
= {\left( {\dfrac{{{\text{QR}}}}{{{\text{BC}}}}} \right)^2} \\
\]
Also from equation \[\left( 5 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = {\left( {\dfrac{{{\text{QR}}}}{{{\text{BC}}}}} \right)^2} \\
= {\left( {\dfrac{{{\text{PQ}}}}{{{\text{AB}}}}} \right)^2} \\
= {\left( {\dfrac{{{\text{RP}}}}{{{\text{CA}}}}} \right)^2} \\
\]
Thus, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Hence, proved.
Note:
In this question, students should write the sides of the triangles appropriately. Since the general area of any triangle is \[{\text{Area = }}\dfrac{1}{2} \times {\text{Base}} \times {\text{Height}}\], so we need to construct the perpendicular triangles for height. Students should know that when two triangles are similar then the ratio of their corresponding sides are same with the ratio of their corresponding altitudes and sides. The measurement of their corresponding angles is also the same.
First, we will calculate the area of two similar triangles and then divide them. Then the similarities of two triangles are used to find the ratios of the corresponding sides.
Complete step by step solution:
Let us assume the two triangles are \[\Delta {\text{PQR}}\] and \[\Delta {\text{ABC}}\].
We will use the formula to find the area of triangle, \[{\text{Area = }}\dfrac{1}{2} \times {\text{Base}} \times {\text{Height}}\].
Now, we will find the area of the triangles \[\Delta {\text{ABC}}\] and \[\Delta {\text{PQR}}\] from the above diagram.
\[{\text{Area of }}\Delta {\text{PQR}} = \dfrac{1}{2} \times {\text{QR}} \times {\text{PS ......}}\left( 1 \right)\]
\[{\text{Area of }}\Delta {\text{ABC}} = \dfrac{1}{2} \times {\text{BC}} \times {\text{AD ......}}\left( 2 \right)\]
Dividing \[\left( 1 \right)\] by \[\left( 2 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{\dfrac{1}{2} \times {\text{QR}} \times {\text{PS}}}}{{\dfrac{1}{2} \times {\text{BC}} \times {\text{AD}}}} \\
= \dfrac{{{\text{QR}} \times {\text{PS}}}}{{{\text{BC}} \times {\text{AD}}}}{\text{ ......}}\left( 3 \right) \\
\]
Since we know that \[\angle {\text{ABC}}\] and \[\angle {\text{PQR}}\] are angles of similar triangles, so \[\angle {\text{ABC}} = \angle {\text{PQR}}\] and both right angled triangles \[\angle {\text{ADB}}\] and \[\angle {\text{PSQ}}\] are equal.
Therefore, \[\Delta {\text{PQS}} \sim \Delta {\text{ABD}}\].
\[ \Rightarrow \dfrac{{{\text{PS}}}}{{{\text{AD}}}} = \dfrac{{{\text{PQ}}}}{{{\text{AB}}}}{\text{ ......}}\left( 4 \right)\]
Substituting this value in equation \[\left( 3 \right)\], we get
\[\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \times \dfrac{{{\text{PQ}}}}{{{\text{AB}}}}{\text{ ......}}\left( 5 \right)\]
Since we know that the triangles \[\Delta {\text{PQR}}\] and \[\Delta {\text{ABC}}\] are similar,
\[\dfrac{{{\text{PQ}}}}{{{\text{AB}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} = \dfrac{{{\text{PR}}}}{{{\text{AC}}}}\]
Using this value in equation \[\left( 5 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \times \dfrac{{{\text{QR}}}}{{{\text{BC}}}} \\
= {\left( {\dfrac{{{\text{QR}}}}{{{\text{BC}}}}} \right)^2} \\
\]
Also from equation \[\left( 5 \right)\], we get
\[
\dfrac{{{\text{Area of }}\Delta {\text{PQR}}}}{{{\text{Area of }}\Delta {\text{ABC}}}} = {\left( {\dfrac{{{\text{QR}}}}{{{\text{BC}}}}} \right)^2} \\
= {\left( {\dfrac{{{\text{PQ}}}}{{{\text{AB}}}}} \right)^2} \\
= {\left( {\dfrac{{{\text{RP}}}}{{{\text{CA}}}}} \right)^2} \\
\]
Thus, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Hence, proved.
Note:
In this question, students should write the sides of the triangles appropriately. Since the general area of any triangle is \[{\text{Area = }}\dfrac{1}{2} \times {\text{Base}} \times {\text{Height}}\], so we need to construct the perpendicular triangles for height. Students should know that when two triangles are similar then the ratio of their corresponding sides are same with the ratio of their corresponding altitudes and sides. The measurement of their corresponding angles is also the same.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE