Answer
Verified
99.9k+ views
Hint: Here, we will first take \[{x^{1/3}} = y\] in the given equation and then find the real roots of the obtained equation by factorization. Then we will put the value of \[y\] back to find the real roots of the given equation.
Complete step by step answer:
It is given that the equation is \[{x^{2/3}} + {x^{1/3}} - 2 = 0\].
Taking \[{x^{1/3}} = y\] in the above equation, we get
\[{y^2} + y - 2 = 0\]
We will now factor the above equation to find the root of the equation.
Factoring the above equation to find the value of \[y\], we get
\[
\Rightarrow {y^2} - y + 2y - 2 = 0 \\
\Rightarrow y\left( {y - 1} \right) + 2\left( {y - 1} \right) = 0 \\
\Rightarrow \left( {y + 2} \right)\left( {y - 1} \right) = 0 \\
\]
Taking \[y + 2 = 0\] and \[y - 1 = 0\] in the above equation, we get
\[ \Rightarrow y + 2 = 0\] or \[y - 1 = 0\]
\[ \Rightarrow y = - 2\] or \[y = 1\]
Replacing \[{x^{1/3}}\] for \[y\] in these above equations, we get
\[ \Rightarrow {x^{1/3}} = 1\] or \[{x^{1/3}} = - 2\]
Taking the square in the above equations, we get
\[
\Rightarrow x = {\left( 1 \right)^3} \\
\Rightarrow x = 1 \\
\] or \[
x = {\left( { - 2} \right)^3} \\
x = - 8 \\
\]
Thus, we have found that the real roots of the given equation are 1 and \[ - 8\].
Hence, the option D is correct.
Note: In this question, the equation can also be solved using the quadratic formula. Students should also know the concept of real roots before solving this question. Also, we are supposed to write the values properly to avoid any miscalculation.
Complete step by step answer:
It is given that the equation is \[{x^{2/3}} + {x^{1/3}} - 2 = 0\].
Taking \[{x^{1/3}} = y\] in the above equation, we get
\[{y^2} + y - 2 = 0\]
We will now factor the above equation to find the root of the equation.
Factoring the above equation to find the value of \[y\], we get
\[
\Rightarrow {y^2} - y + 2y - 2 = 0 \\
\Rightarrow y\left( {y - 1} \right) + 2\left( {y - 1} \right) = 0 \\
\Rightarrow \left( {y + 2} \right)\left( {y - 1} \right) = 0 \\
\]
Taking \[y + 2 = 0\] and \[y - 1 = 0\] in the above equation, we get
\[ \Rightarrow y + 2 = 0\] or \[y - 1 = 0\]
\[ \Rightarrow y = - 2\] or \[y = 1\]
Replacing \[{x^{1/3}}\] for \[y\] in these above equations, we get
\[ \Rightarrow {x^{1/3}} = 1\] or \[{x^{1/3}} = - 2\]
Taking the square in the above equations, we get
\[
\Rightarrow x = {\left( 1 \right)^3} \\
\Rightarrow x = 1 \\
\] or \[
x = {\left( { - 2} \right)^3} \\
x = - 8 \\
\]
Thus, we have found that the real roots of the given equation are 1 and \[ - 8\].
Hence, the option D is correct.
Note: In this question, the equation can also be solved using the quadratic formula. Students should also know the concept of real roots before solving this question. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A block A slides over another block B which is placed class 11 physics JEE_Main
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main