
The real roots of the equation \[{x^{2/3}} + {x^{1/3}} - 2 = 0\] are
A. 1, 8
B. \[ - 1\], \[ - 8\]
C. \[ - 1\], 8
D. 1, \[ - 8\]
Answer
127.8k+ views
Hint: Here, we will first take \[{x^{1/3}} = y\] in the given equation and then find the real roots of the obtained equation by factorization. Then we will put the value of \[y\] back to find the real roots of the given equation.
Complete step by step answer:
It is given that the equation is \[{x^{2/3}} + {x^{1/3}} - 2 = 0\].
Taking \[{x^{1/3}} = y\] in the above equation, we get
\[{y^2} + y - 2 = 0\]
We will now factor the above equation to find the root of the equation.
Factoring the above equation to find the value of \[y\], we get
\[
\Rightarrow {y^2} - y + 2y - 2 = 0 \\
\Rightarrow y\left( {y - 1} \right) + 2\left( {y - 1} \right) = 0 \\
\Rightarrow \left( {y + 2} \right)\left( {y - 1} \right) = 0 \\
\]
Taking \[y + 2 = 0\] and \[y - 1 = 0\] in the above equation, we get
\[ \Rightarrow y + 2 = 0\] or \[y - 1 = 0\]
\[ \Rightarrow y = - 2\] or \[y = 1\]
Replacing \[{x^{1/3}}\] for \[y\] in these above equations, we get
\[ \Rightarrow {x^{1/3}} = 1\] or \[{x^{1/3}} = - 2\]
Taking the square in the above equations, we get
\[
\Rightarrow x = {\left( 1 \right)^3} \\
\Rightarrow x = 1 \\
\] or \[
x = {\left( { - 2} \right)^3} \\
x = - 8 \\
\]
Thus, we have found that the real roots of the given equation are 1 and \[ - 8\].
Hence, the option D is correct.
Note: In this question, the equation can also be solved using the quadratic formula. Students should also know the concept of real roots before solving this question. Also, we are supposed to write the values properly to avoid any miscalculation.
Complete step by step answer:
It is given that the equation is \[{x^{2/3}} + {x^{1/3}} - 2 = 0\].
Taking \[{x^{1/3}} = y\] in the above equation, we get
\[{y^2} + y - 2 = 0\]
We will now factor the above equation to find the root of the equation.
Factoring the above equation to find the value of \[y\], we get
\[
\Rightarrow {y^2} - y + 2y - 2 = 0 \\
\Rightarrow y\left( {y - 1} \right) + 2\left( {y - 1} \right) = 0 \\
\Rightarrow \left( {y + 2} \right)\left( {y - 1} \right) = 0 \\
\]
Taking \[y + 2 = 0\] and \[y - 1 = 0\] in the above equation, we get
\[ \Rightarrow y + 2 = 0\] or \[y - 1 = 0\]
\[ \Rightarrow y = - 2\] or \[y = 1\]
Replacing \[{x^{1/3}}\] for \[y\] in these above equations, we get
\[ \Rightarrow {x^{1/3}} = 1\] or \[{x^{1/3}} = - 2\]
Taking the square in the above equations, we get
\[
\Rightarrow x = {\left( 1 \right)^3} \\
\Rightarrow x = 1 \\
\] or \[
x = {\left( { - 2} \right)^3} \\
x = - 8 \\
\]
Thus, we have found that the real roots of the given equation are 1 and \[ - 8\].
Hence, the option D is correct.
Note: In this question, the equation can also be solved using the quadratic formula. Students should also know the concept of real roots before solving this question. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
