Answer
Verified
327.6k+ views
Hint: We will first form a link between the values of a system's mechanical energy in the K and C reference frames and the using the formula of velocity for any \[{i^{th}}\]particle we will derive at an equation for total energy. We can then compare this derived equation to find the value of x.
Formula used:
\[P = \sum {\dfrac{1}{2}{m_i}v_i^2} \]
Where P= kinetic energy.
Complete answer:
To discover the link between the values of a system's mechanical energy in the K and C reference frames, start with the system's kinetic energy P.
In the K frame, the velocity of the \[{i^{th}}\] particle may be written as \[\overrightarrow {{v_i}} = \overrightarrow {{v_i}} + \overrightarrow {{v_c}} \] ( where \[\overrightarrow {{v_c}} \] is the velocity with respect to frame C and \[\overrightarrow {{v_i}} \] is velocity of first reference ).
We also know that kinetic energy P:
\[P = \sum {\dfrac{1}{2}{m_i}v_i^2} \]
Or, \[P = \sum {\dfrac{1}{2}} {m_i}\left( {\overrightarrow {{v_1}} + \overrightarrow {{v_c}} } \right)\left( {\overrightarrow {{v_i}} + \overrightarrow {{v_c}} } \right)\]
Or, \[P = \sum {\dfrac{1}{2}{m_i}v_i^2} + \overrightarrow {{v_c}} \sum {{m_i}} \overrightarrow {{v_1}} + \sum {\dfrac{1}{2}} {m_i}v_c^2......(1)\]
Also in the frame C, \[\sum {{m_i}{v_i} = 0} \]
Hence equation now becomes:
\[P = \overrightarrow P + \dfrac{1}{2}mv_c^2\]
Or, \[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\]. (because here in this problem \[{v_c} = V\])
Hence the equation will not change and be given by :
\[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\]
But according to the given question, in frame K, they have considered the equation as \[E = \overrightarrow E + \dfrac{1}{x}m{V^2}\] here they have considered kinetic energy as E. thus by comparing \[E = \overrightarrow E + \dfrac{1}{x}m{V^2}\]
And \[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\] we can see that \[x = 2\].
Hence the correct value of x will be 2.
Note:
Here keep in mind that the magnitude of a system's internal potential energy U is the same in all reference frames since the internal potential enemy U of a system depends solely on its configuration. We get the same solution by adding U to the left and right sides of Eq. 1, hence there’s no need to add it.
Formula used:
\[P = \sum {\dfrac{1}{2}{m_i}v_i^2} \]
Where P= kinetic energy.
Complete answer:
To discover the link between the values of a system's mechanical energy in the K and C reference frames, start with the system's kinetic energy P.
In the K frame, the velocity of the \[{i^{th}}\] particle may be written as \[\overrightarrow {{v_i}} = \overrightarrow {{v_i}} + \overrightarrow {{v_c}} \] ( where \[\overrightarrow {{v_c}} \] is the velocity with respect to frame C and \[\overrightarrow {{v_i}} \] is velocity of first reference ).
We also know that kinetic energy P:
\[P = \sum {\dfrac{1}{2}{m_i}v_i^2} \]
Or, \[P = \sum {\dfrac{1}{2}} {m_i}\left( {\overrightarrow {{v_1}} + \overrightarrow {{v_c}} } \right)\left( {\overrightarrow {{v_i}} + \overrightarrow {{v_c}} } \right)\]
Or, \[P = \sum {\dfrac{1}{2}{m_i}v_i^2} + \overrightarrow {{v_c}} \sum {{m_i}} \overrightarrow {{v_1}} + \sum {\dfrac{1}{2}} {m_i}v_c^2......(1)\]
Also in the frame C, \[\sum {{m_i}{v_i} = 0} \]
Hence equation now becomes:
\[P = \overrightarrow P + \dfrac{1}{2}mv_c^2\]
Or, \[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\]. (because here in this problem \[{v_c} = V\])
Hence the equation will not change and be given by :
\[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\]
But according to the given question, in frame K, they have considered the equation as \[E = \overrightarrow E + \dfrac{1}{x}m{V^2}\] here they have considered kinetic energy as E. thus by comparing \[E = \overrightarrow E + \dfrac{1}{x}m{V^2}\]
And \[P = \overrightarrow P + \dfrac{1}{2}m{V^2}\] we can see that \[x = 2\].
Hence the correct value of x will be 2.
Note:
Here keep in mind that the magnitude of a system's internal potential energy U is the same in all reference frames since the internal potential enemy U of a system depends solely on its configuration. We get the same solution by adding U to the left and right sides of Eq. 1, hence there’s no need to add it.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE