Answer
Verified
443.1k+ views
Hint: So we have the equation of regression equation given for each and by comparing the equation with $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$ and for $X$ on $Y$ it will be $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we will get ${b_{yx}}\& {b_{xy}}$ . And then by using the formula of correlation coefficient we will get the value. And for the second question we have the relation ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ , we will get the value for ${\sigma _y}$ .
Formula used:
Correlation coefficient,
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
Here,
$r$ , will be the correlation coefficient
${b_{yx}}\& {b_{xy}}$ , will be the regression equation value
Complete step-by-step answer:
So we have the regression equation $y$ on $x$ is $y = \dfrac{2}{9}x$ .
So now on comparing the above equation with the formula $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$, we get
$ \Rightarrow {b_{yx}} = \dfrac{2}{9}$
Similarly the regression equation of $X$ on $Y$ is $x = \dfrac{y}{2} + \dfrac{7}{6}$.
So on comparing the above equation with the formula $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we get
$ \Rightarrow {b_{xy}} = \dfrac{1}{2}$
As we know the correlation coefficient between $x$ and $y$ is
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
So on substituting the values, we get
$ \Rightarrow r = \sqrt {\dfrac{2}{9} \cdot \dfrac{1}{2}} $
And on solving the above square root, we get
$ \Rightarrow r = \pm \dfrac{1}{3}$
So if $r = \dfrac{1}{3}$ then ${b_{yx}}\& {b_{xy}}$ will be positive.
Therefore, the correlation between $x$ and $y$ is $\dfrac{1}{3}$
As we know we have the values given as \[\sigma _x^2 = 4\]
So on solving it we get
\[ \Rightarrow \sigma _x^{} = 2\]
So, we have the relation given by ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ .
On substituting the values, we have
$ \Rightarrow \dfrac{2}{9} = \dfrac{1}{3} \cdot \dfrac{{{\sigma _y}}}{2}$
Now taking the constant term one side and solving it, we will get the value as
$ \Rightarrow {\sigma _y} = \dfrac{{12}}{9}$
And on making the fraction into the simplest form we get
$ \Rightarrow {\sigma _y} = \dfrac{4}{3}$
Hence, $\sigma _y^2 = \dfrac{{16}}{9}$ will be the value.
Note: The level of affiliation is estimated by a correlation coefficient, meant by $r$ . It is at times called Pearson's correlation coefficient after its originator and is a proportion of straight affiliation. On the off chance that a bended line is expected to communicate the relationship, other and more convoluted proportions of the correlation should be utilized.
Formula used:
Correlation coefficient,
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
Here,
$r$ , will be the correlation coefficient
${b_{yx}}\& {b_{xy}}$ , will be the regression equation value
Complete step-by-step answer:
So we have the regression equation $y$ on $x$ is $y = \dfrac{2}{9}x$ .
So now on comparing the above equation with the formula $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$, we get
$ \Rightarrow {b_{yx}} = \dfrac{2}{9}$
Similarly the regression equation of $X$ on $Y$ is $x = \dfrac{y}{2} + \dfrac{7}{6}$.
So on comparing the above equation with the formula $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we get
$ \Rightarrow {b_{xy}} = \dfrac{1}{2}$
As we know the correlation coefficient between $x$ and $y$ is
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
So on substituting the values, we get
$ \Rightarrow r = \sqrt {\dfrac{2}{9} \cdot \dfrac{1}{2}} $
And on solving the above square root, we get
$ \Rightarrow r = \pm \dfrac{1}{3}$
So if $r = \dfrac{1}{3}$ then ${b_{yx}}\& {b_{xy}}$ will be positive.
Therefore, the correlation between $x$ and $y$ is $\dfrac{1}{3}$
As we know we have the values given as \[\sigma _x^2 = 4\]
So on solving it we get
\[ \Rightarrow \sigma _x^{} = 2\]
So, we have the relation given by ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ .
On substituting the values, we have
$ \Rightarrow \dfrac{2}{9} = \dfrac{1}{3} \cdot \dfrac{{{\sigma _y}}}{2}$
Now taking the constant term one side and solving it, we will get the value as
$ \Rightarrow {\sigma _y} = \dfrac{{12}}{9}$
And on making the fraction into the simplest form we get
$ \Rightarrow {\sigma _y} = \dfrac{4}{3}$
Hence, $\sigma _y^2 = \dfrac{{16}}{9}$ will be the value.
Note: The level of affiliation is estimated by a correlation coefficient, meant by $r$ . It is at times called Pearson's correlation coefficient after its originator and is a proportion of straight affiliation. On the off chance that a bended line is expected to communicate the relationship, other and more convoluted proportions of the correlation should be utilized.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE