Answer
Verified
438.6k+ views
Hint: We have to find the relation between \[T\]and $g$. This is a question from the topic of the simple pendulum. A simple pendulum consists of a mass suspended by an inextensible massless string of a length $l$. Here we have to find the relation between the period of oscillation of the simple pendulum and the acceleration due to gravity.
Complete step by step answer:
The time taken by an oscillating body to repeat its periodic motion is called the period of oscillation. Here we consider \[T\] as the period of oscillation of the simple pendulum. $g$ stands for the acceleration due to gravity.
To find the relation between the period of oscillation and the acceleration due to gravity, let us consider the expression for the period of oscillation of a simple pendulum,
The Time period of a simple pendulum is given by,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
To eliminate the square root on the RHS, we have to square both sides of the equation
We get,
${T^2} = 4{\pi ^2}\dfrac{l}{g}$
From this we get that, for a constant length of the pendulum the square of the time period will be inversely proportional to the acceleration due to gravity, i.e.
${T^2} \propto \dfrac{1}{g}
\Rightarrow {T^2} \propto {g^{ - 1}}$
So, the correct answer is “Option C”.
Note:
The time period of the oscillation of a pendulum is independent of the mass of the bob. When a body is allowed to oscillate freely it will oscillate with a particular frequency. Such oscillations are called free oscillations. The frequency of free oscillations is called natural frequency. A pendulum that is adjusted in a way that it has a period of two seconds is called a second’s pendulum.
Complete step by step answer:
The time taken by an oscillating body to repeat its periodic motion is called the period of oscillation. Here we consider \[T\] as the period of oscillation of the simple pendulum. $g$ stands for the acceleration due to gravity.
To find the relation between the period of oscillation and the acceleration due to gravity, let us consider the expression for the period of oscillation of a simple pendulum,
The Time period of a simple pendulum is given by,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
To eliminate the square root on the RHS, we have to square both sides of the equation
We get,
${T^2} = 4{\pi ^2}\dfrac{l}{g}$
From this we get that, for a constant length of the pendulum the square of the time period will be inversely proportional to the acceleration due to gravity, i.e.
${T^2} \propto \dfrac{1}{g}
\Rightarrow {T^2} \propto {g^{ - 1}}$
So, the correct answer is “Option C”.
Note:
The time period of the oscillation of a pendulum is independent of the mass of the bob. When a body is allowed to oscillate freely it will oscillate with a particular frequency. Such oscillations are called free oscillations. The frequency of free oscillations is called natural frequency. A pendulum that is adjusted in a way that it has a period of two seconds is called a second’s pendulum.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE