
The relation between and by
A.
B.
C.
D.
Answer
479.4k+ views
Hint: We have to find the relation between and . This is a question from the topic of the simple pendulum. A simple pendulum consists of a mass suspended by an inextensible massless string of a length . Here we have to find the relation between the period of oscillation of the simple pendulum and the acceleration due to gravity.
Complete step by step answer:
The time taken by an oscillating body to repeat its periodic motion is called the period of oscillation. Here we consider as the period of oscillation of the simple pendulum. stands for the acceleration due to gravity.
To find the relation between the period of oscillation and the acceleration due to gravity, let us consider the expression for the period of oscillation of a simple pendulum,
The Time period of a simple pendulum is given by,
To eliminate the square root on the RHS, we have to square both sides of the equation
We get,
From this we get that, for a constant length of the pendulum the square of the time period will be inversely proportional to the acceleration due to gravity, i.e.
So, the correct answer is “Option C”.
Note:
The time period of the oscillation of a pendulum is independent of the mass of the bob. When a body is allowed to oscillate freely it will oscillate with a particular frequency. Such oscillations are called free oscillations. The frequency of free oscillations is called natural frequency. A pendulum that is adjusted in a way that it has a period of two seconds is called a second’s pendulum.
Complete step by step answer:
The time taken by an oscillating body to repeat its periodic motion is called the period of oscillation. Here we consider
To find the relation between the period of oscillation and the acceleration due to gravity, let us consider the expression for the period of oscillation of a simple pendulum,
The Time period of a simple pendulum is given by,
To eliminate the square root on the RHS, we have to square both sides of the equation
We get,
From this we get that, for a constant length of the pendulum the square of the time period will be inversely proportional to the acceleration due to gravity, i.e.
So, the correct answer is “Option C”.
Note:
The time period of the oscillation of a pendulum is independent of the mass of the bob. When a body is allowed to oscillate freely it will oscillate with a particular frequency. Such oscillations are called free oscillations. The frequency of free oscillations is called natural frequency. A pendulum that is adjusted in a way that it has a period of two seconds is called a second’s pendulum.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹31,500 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
