Answer
Verified
455.7k+ views
Hint: In the question we are asked to find the relation between ‘T’ and ‘g’. Consider a mass “m” suspended on a wire of length ‘$l$ ’ undergoes simple harmonic motion, ‘T’ is the time period, the time required to complete one oscillation and ‘g’ is the acceleration due to gravity (9.8m/s). To solve this we know the equation of time period; by squaring the known equation we can formulate the relation between ‘T’ and ‘g’.
Formula used:
$T=2\pi \sqrt{\dfrac{l}{g}}$
Time period of a simple oscillation is given by
Complete answer:
To find the relation between ‘T’ and ‘g’,
Let us consider ‘$l$ ’ to be the length of the pendulum.
As we know, time period is given by the equation
$T=2\pi \sqrt{\dfrac{l}{g}}$
Squaring both sides of the equation, we get
${{T}^{2}}=4{{\pi }^{2}}\dfrac{l}{g}$
From this equation we get,
${{T}^{2}}\propto \dfrac{l}{g}$
Thus we can conclude that, $T\propto \sqrt{\dfrac{l}{g}}$, when l is unchanged.
So, the correct answer is “Option D”.
Additional Information:
Time of a simple pendulum derivation:
Consider a simple pendulum with a mass ‘m’ suspended on a wire of length ‘$l$ ’.
For one oscillation the pendulum is displaced at an angle of ‘$\theta $’ by ‘x’ distance.
Let ${{T}_{0}}$ be the time period at equilibrium.
${{T}_{0}}=mg$
When the pendulum oscillates, it is displaced at a small angle $\theta $
For this small displacement $\theta $, the restoring force acting will be
Restoring force=$-mg\sin \theta $
Since the angle of displacement $\theta $ is very small here, we can approximate $\sin \theta $ to $\theta $
I.e. $\sin \theta \approx \theta $
Hence the force here can be rewritten as
$F=-mg\theta $
Now let us consider the triangle ABC in the figure.
We know that sin of the angle $\theta $ is the ratio of the opposite side to the hypotenuse of the triangle. Since here $\sin \theta \approx \theta $, we can write this as
$\theta =\dfrac{opposite}{hypotenuse}$
Here the opposite side of the angle is the displacement ‘x’ and the hypotenuse of the triangle is length ‘$l$ ’ of the pendulum. Hence we can rewrite the equation as
$\theta =\dfrac{x}{l}$
Therefore the restoring force on the pendulum is
$F=-mg\theta =-mg\times \dfrac{x}{l}$
By Newton’s second law of motion, we have the equation of motion as
$F=ma$, Where ‘m’ is the mass of the body and ‘a’ is the acceleration.
We can rewrite this equation as
$a=\dfrac{F}{m}$
From the previous equation, we know that $F=-mg\dfrac{x}{l}$. Substituting this here, we get
$a=\dfrac{-mg\left( \dfrac{x}{l} \right)}{m}$
Eliminating the common terms, we get
$a=-\dfrac{g}{l}\times x$
For a simple harmonic motion we know that, $a=-{{\omega }^{2}}x$
On comparing both these equations, we get
$-{{\omega }^{2}}x=-\dfrac{g}{l}x$
By simplifying this,
${{\omega }^{2}}=\dfrac{g}{l}$
$\omega =\sqrt{\dfrac{g}{l}}$
Time period ‘T’ is given by the equation
$T=\dfrac{2\pi }{\omega }$
Substitute the value of $\omega $ in this equation
Therefore time period, $T=2\pi \sqrt{\dfrac{l}{g}}$
Note:
This question can be solved by another method.
We know that, for a simple pendulum its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$
Time period of an oscillation can also be written as
$T=\dfrac{2\pi }{\omega }$
By substituting the value of angular frequency ($\omega $ ) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Thus we get $T\propto \sqrt{\dfrac{l}{g}}$
Hence we get the same solution.
Formula used:
$T=2\pi \sqrt{\dfrac{l}{g}}$
Time period of a simple oscillation is given by
Complete answer:
To find the relation between ‘T’ and ‘g’,
Let us consider ‘$l$ ’ to be the length of the pendulum.
As we know, time period is given by the equation
$T=2\pi \sqrt{\dfrac{l}{g}}$
Squaring both sides of the equation, we get
${{T}^{2}}=4{{\pi }^{2}}\dfrac{l}{g}$
From this equation we get,
${{T}^{2}}\propto \dfrac{l}{g}$
Thus we can conclude that, $T\propto \sqrt{\dfrac{l}{g}}$, when l is unchanged.
So, the correct answer is “Option D”.
Additional Information:
Time of a simple pendulum derivation:
Consider a simple pendulum with a mass ‘m’ suspended on a wire of length ‘$l$ ’.
For one oscillation the pendulum is displaced at an angle of ‘$\theta $’ by ‘x’ distance.
Let ${{T}_{0}}$ be the time period at equilibrium.
${{T}_{0}}=mg$
When the pendulum oscillates, it is displaced at a small angle $\theta $
For this small displacement $\theta $, the restoring force acting will be
Restoring force=$-mg\sin \theta $
Since the angle of displacement $\theta $ is very small here, we can approximate $\sin \theta $ to $\theta $
I.e. $\sin \theta \approx \theta $
Hence the force here can be rewritten as
$F=-mg\theta $
Now let us consider the triangle ABC in the figure.
We know that sin of the angle $\theta $ is the ratio of the opposite side to the hypotenuse of the triangle. Since here $\sin \theta \approx \theta $, we can write this as
$\theta =\dfrac{opposite}{hypotenuse}$
Here the opposite side of the angle is the displacement ‘x’ and the hypotenuse of the triangle is length ‘$l$ ’ of the pendulum. Hence we can rewrite the equation as
$\theta =\dfrac{x}{l}$
Therefore the restoring force on the pendulum is
$F=-mg\theta =-mg\times \dfrac{x}{l}$
By Newton’s second law of motion, we have the equation of motion as
$F=ma$, Where ‘m’ is the mass of the body and ‘a’ is the acceleration.
We can rewrite this equation as
$a=\dfrac{F}{m}$
From the previous equation, we know that $F=-mg\dfrac{x}{l}$. Substituting this here, we get
$a=\dfrac{-mg\left( \dfrac{x}{l} \right)}{m}$
Eliminating the common terms, we get
$a=-\dfrac{g}{l}\times x$
For a simple harmonic motion we know that, $a=-{{\omega }^{2}}x$
On comparing both these equations, we get
$-{{\omega }^{2}}x=-\dfrac{g}{l}x$
By simplifying this,
${{\omega }^{2}}=\dfrac{g}{l}$
$\omega =\sqrt{\dfrac{g}{l}}$
Time period ‘T’ is given by the equation
$T=\dfrac{2\pi }{\omega }$
Substitute the value of $\omega $ in this equation
Therefore time period, $T=2\pi \sqrt{\dfrac{l}{g}}$
Note:
This question can be solved by another method.
We know that, for a simple pendulum its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$
Time period of an oscillation can also be written as
$T=\dfrac{2\pi }{\omega }$
By substituting the value of angular frequency ($\omega $ ) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Thus we get $T\propto \sqrt{\dfrac{l}{g}}$
Hence we get the same solution.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE