Answer
Verified
395.8k+ views
Hint: Find the two relations of young’s modulus with bulk modulus and modulus of rigidity respectively. Then try to eliminate the stress applied $\left( \sigma \right)$ from both the relations.
Complete answer:
So we have to interrelate the young’s modulus, bulk modulus, and modulus of elasticity. To introduce young’s modulus $Y$, we have to provide longitudinal strain in the object. Since there is a longitudinal strain, so with that a lateral strain would also be there which helps to introduce the term Poisson’s ratio $\sigma$.
To introduce bulk modulus $K$, we have to provide volumetric strain in all directions of the object.
Let $\alpha $=longitudinal strain per unit stress
And $\beta $=lateral strain per unit stress.
Then Poisson’s ratio, \[\sigma = \dfrac{{\text{lateral strain}}}{{\text{longitudinal strain}}} = \dfrac{\beta }{\alpha }\]
Young’s modulus, $Y = \dfrac{{\text{longitudinal stress}}}{{\text{longitudinal strain}}} = \dfrac{1}{\alpha }$
And Bulk modulus, $K = \dfrac{{\text{hydrostatic strain}}}{{\text{volumetric strain}}} = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}}$
Now to introduce $\sigma $in the formula of bulk modulus, we do as follows
$K = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}} = \dfrac{1}{{3\alpha \left( {1 - 2\dfrac{\beta }{\alpha }} \right)}}$
Since $\sigma = \dfrac{\beta }{\alpha }$ and $Y = \dfrac{1}{\alpha }$ , so by substituting these values in above equation, we get
$K = \dfrac{Y}{{3\left( {1 - 2\sigma } \right)}} \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)$
Now looking into options, as we see that the options are given in terms of $Y$, $K$ and modulus of rigidity$\left( \eta \right)$. For this we use the formula
$Y = 2\eta \left( {1 + \sigma } \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)$
Now get the value of $\sigma $from both the equation $\left( 1 \right)$and $\left( 2 \right)$
From equation$\left( 1 \right)$,
$
1 - 2\sigma = \dfrac{Y}{{3K}} \\
\to 2\sigma = 1 - \dfrac{Y}{{3K}} \\
$
\[ \Rightarrow \sigma = \dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)\]
Now from equation $\left( 2 \right)$
$\sigma = \dfrac{Y}{{2\eta }} - 1 \cdot \cdot \cdot \cdot \cdot \cdot \left( 4 \right)$
By comparing equations $\left( 3 \right)$ and$\left( 4 \right)$, we have
$
\dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) = \dfrac{Y}{{2\eta }} - 1 \\
\dfrac{3}{2} - \dfrac{Y}{{6K}} = \dfrac{Y}{{2\eta }} \Leftrightarrow 3 - \dfrac{Y}{{3K}} = \dfrac{Y}{\eta } \\
$
On further solving, we get
$
3 = \dfrac{Y}{\eta } + \dfrac{Y}{{3K}} \\
\Rightarrow \dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}} \\
$
$\therefore$ The relation between young’s modulus $Y$, bulk modulus $K$, and modulus of elasticity $\sigma$ is $\dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}}$. Hence, the correct option is B.
Note:
Don’t confuse it with too many modulus. Basically there are three types of modulus in elasticity: Modulus of elasticity or Young’s modulus, Bulk modulus, and Modulus of rigidity or Shear modulus. While finding relations, look at the options to get the idea to which format we have to find the ultimate relationship.
Complete answer:
So we have to interrelate the young’s modulus, bulk modulus, and modulus of elasticity. To introduce young’s modulus $Y$, we have to provide longitudinal strain in the object. Since there is a longitudinal strain, so with that a lateral strain would also be there which helps to introduce the term Poisson’s ratio $\sigma$.
To introduce bulk modulus $K$, we have to provide volumetric strain in all directions of the object.
Let $\alpha $=longitudinal strain per unit stress
And $\beta $=lateral strain per unit stress.
Then Poisson’s ratio, \[\sigma = \dfrac{{\text{lateral strain}}}{{\text{longitudinal strain}}} = \dfrac{\beta }{\alpha }\]
Young’s modulus, $Y = \dfrac{{\text{longitudinal stress}}}{{\text{longitudinal strain}}} = \dfrac{1}{\alpha }$
And Bulk modulus, $K = \dfrac{{\text{hydrostatic strain}}}{{\text{volumetric strain}}} = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}}$
Now to introduce $\sigma $in the formula of bulk modulus, we do as follows
$K = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}} = \dfrac{1}{{3\alpha \left( {1 - 2\dfrac{\beta }{\alpha }} \right)}}$
Since $\sigma = \dfrac{\beta }{\alpha }$ and $Y = \dfrac{1}{\alpha }$ , so by substituting these values in above equation, we get
$K = \dfrac{Y}{{3\left( {1 - 2\sigma } \right)}} \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)$
Now looking into options, as we see that the options are given in terms of $Y$, $K$ and modulus of rigidity$\left( \eta \right)$. For this we use the formula
$Y = 2\eta \left( {1 + \sigma } \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)$
Now get the value of $\sigma $from both the equation $\left( 1 \right)$and $\left( 2 \right)$
From equation$\left( 1 \right)$,
$
1 - 2\sigma = \dfrac{Y}{{3K}} \\
\to 2\sigma = 1 - \dfrac{Y}{{3K}} \\
$
\[ \Rightarrow \sigma = \dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)\]
Now from equation $\left( 2 \right)$
$\sigma = \dfrac{Y}{{2\eta }} - 1 \cdot \cdot \cdot \cdot \cdot \cdot \left( 4 \right)$
By comparing equations $\left( 3 \right)$ and$\left( 4 \right)$, we have
$
\dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) = \dfrac{Y}{{2\eta }} - 1 \\
\dfrac{3}{2} - \dfrac{Y}{{6K}} = \dfrac{Y}{{2\eta }} \Leftrightarrow 3 - \dfrac{Y}{{3K}} = \dfrac{Y}{\eta } \\
$
On further solving, we get
$
3 = \dfrac{Y}{\eta } + \dfrac{Y}{{3K}} \\
\Rightarrow \dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}} \\
$
$\therefore$ The relation between young’s modulus $Y$, bulk modulus $K$, and modulus of elasticity $\sigma$ is $\dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}}$. Hence, the correct option is B.
Note:
Don’t confuse it with too many modulus. Basically there are three types of modulus in elasticity: Modulus of elasticity or Young’s modulus, Bulk modulus, and Modulus of rigidity or Shear modulus. While finding relations, look at the options to get the idea to which format we have to find the ultimate relationship.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE