
The Schrodinger wave equation for hydrogen atom is:
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Where ${a_0}$ is Bohr radius. If the radial node in 2s be at ${r_0}$ , then find r in terms of ${a_0}$
A.$\dfrac{{{a_0}}}{2}$
B.$2{a_0}$
C.$\sqrt {2{a_0}} $
D.$\dfrac{{{a_0}}}{{\sqrt 2 }}$
Answer
477k+ views
Hint: The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero, therefore ${\Psi _{2s}}^2 = 0$ and At node, the radial node is at \[{r_0}\] , So \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]\] = 0, then we can calculate r in terms of ${a_0}$
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
