Answer
Verified
460.8k+ views
Hint:
By substituting all the terms in the binomial expression formula we will be getting three equations. By dividing the equations, we will be getting the next two equations. By equating the two equations we will be getting the one value. By substituting the one values in the equations we will be getting all the values.
Useful formula:
The formulae used in this question are,
The formula for binomial expression is,
\[{({\text{x}} + {\text{a}})^{\text{n}}} \Rightarrow {{\text{T}}_{{\text{r + 1}}}} = {{\text{n}}_{{{\text{C}}_{\text{r}}}}}{({\text{x}})^{{\text{n}} - {\text{r}}}}{({\text{a}})^{\text{r}}}\]
Where,
\[{\text{a}}\] be the first of the expression
\[{\text{r}}\] be the term number
\[{\text{n}}\] be the exponent on the binomial
The formula for \[{\text{n}}!\] is,
\[{\text{n}}! = {\text{n}} \times ({\text{n}} - 1)!\]
Where,
\[{\text{n}}\] be the required number
The formula for number of combinations is,
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = \dfrac{{{\text{n!}}}}{{{\text{r!(n}} - {\text{r)!}}}}\]
Where,
\[{\text{n}}\] be the number of objects in the expression
\[{\text{r}}\] be the number of choosing objects
Complete step by step solution:
The data given in the question are,
The second term in the above expression is \[240\]
The third term in the above expression is \[720\]
The fourth term in the above expression is \[1080\]
To find the value of \[{\text{x, a and n}}\]in the given \[{({\text{x}} + {\text{a}})^{\text{n}}}\] expression,
The second term in the above expression \[ = \]\[240\]
\[ \Rightarrow {{\text{T}}_2} = 240\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{1 + 1}}}} = 240\]
By seeing the above equation, we can say that \[{\text{r}} = 1\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_1}}}{({\text{x}})^{{\text{n}} - 1}}{({\text{a}})^1} = 240...............(1)\]
The third term in the above expression \[ = \] \[720\]
\[ \Rightarrow {{\text{T}}_3} = 720\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{2 + 1}}}} = 720\]
By seeing the above equation, we can say that \[{\text{r}} = 2\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_2}}}{({\text{x}})^{{\text{n}} - 2}}{({\text{a}})^2} = 720...............(2)\]
The fourth term in the above expression \[ = \] \[1080\]
\[ \Rightarrow {{\text{T}}_4} = 1080\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{3 + 1}}}} = 1080\]
By seeing the above equation, we can say that \[{\text{r}} = 3\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_3}}}{({\text{x}})^{{\text{n}} - 3}}{({\text{a}})^3} = 1080...............(3)\]
By dividing $(2)\,{\text{and (1)}}$,
\[ \Rightarrow \dfrac{{{{\text{n}}_{{{\text{C}}_2}}}{{({\text{x}})}^{{\text{n}} - 2}}{{({\text{a}})}^2}}}{{{{\text{n}}_{{\text{C}}_1}}{{({\text{x}})}^{{\text{n}} - 1}}{{({\text{a}})}^1}}} = \dfrac{{720}}{{240}}\]
By using the combination formula, we can get,
\[ \Rightarrow \dfrac{{\dfrac{{{\text{n!}}}}{{2!({\text{n}} - {\text{2}})!}}\, \times {{({\text{x}})}^{{\text{n}} - 2 - ({\text{n - 1}})}} \times {\text{a}}}}{{\dfrac{{{\text{n!}}}}{{1!({\text{n}} - 1)!}}}} = 3\]
By simplifying we get,
\[ \Rightarrow \dfrac{{{\text{n!}}}}{{2({\text{n}} - {\text{2}})!}}\, \times \dfrac{{{\text{1!(n}} - 1){\text{!}}}}{{{\text{n}}!}} \times {({\text{x}})^{ - {\text{1}}}} \times {\text{a}} = 3\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{(n}} - 1)({\text{n}} - 2){\text{!}}}}{{{\text{2(n}} - 2)!}} \times \dfrac{{\text{a}}}{{\text{x}}} = 3\]
By cancelling we get,
\[ \Rightarrow \dfrac{{{\text{(n}} - 1)}}{{\text{2}}} \times \dfrac{{\text{a}}}{{\text{x}}} = 3\]
\[ \Rightarrow {\text{(n}} - 1) \times \dfrac{{\text{a}}}{{\text{x}}} = 6\]
By simplifying the above we get the below equation,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{{{\text{(n}} - 1)}}...............({\text{A}})\]
By dividing $(3)\,{\text{and (2)}}$,
\[ \Rightarrow \dfrac{{{{\text{n}}_{{\text{C}}_3}}{{({\text{x}})}^{{\text{n}} - 3}}{{({\text{a}})}^3}}}{{{{\text{n}}_{{\text{C}}_2}}{{({\text{x}})}^{{\text{n}} - 2}}{{({\text{a}})}^2}}} = \dfrac{{1080}}{{720}}\]
By using the combination formula, we can get,
\[ \Rightarrow \dfrac{{\dfrac{{{\text{n!}}}}{{3!({\text{n}} - 3)!}}\, \times {{({\text{x}})}^{{\text{n}} - 3 - ({\text{n}} - 2)}} \times {\text{a}}}}{{\dfrac{{{\text{n!}}}}{{2!({\text{n}} - 2)!}}}} = \dfrac{3}{2}\]
By simplifying we get,
\[ \Rightarrow \dfrac{{{\text{n!}}}}{{3!({\text{n}} - 3)!}}\, \times \dfrac{{{\text{2!(n}} - 2){\text{!}}}}{{{\text{n}}!}} \times {({\text{x}})^{ - {\text{1}}}} \times {\text{a}} = \dfrac{3}{2}\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{2!(n}} - 2)({\text{n}} - 3){\text{!}}}}{{{\text{3!(n}} - 3)!}} \times \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{2(n}} - 2)}}{{3 \times 2}} \times \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} \times \dfrac{{{\text{(n}} - 2)}}{3} = \dfrac{3}{2}\]
By simplifying the above we get the below equation,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{9}{{{\text{2(n}} - 2)}}...............({\text{B}})\]
By equating $({\text{A}})\,{\text{and (B)}}$,
\[ \Rightarrow \dfrac{6}{{{\text{n}} - 1}} = \dfrac{9}{{{\text{2(n}} - 2)}}\]
By cancelling we get,
\[ \Rightarrow \dfrac{2}{{{\text{n}} - 1}} = \dfrac{3}{{{\text{2(n}} - 2)}}\]
\[ \Rightarrow \dfrac{4}{{{\text{n}} - 1}} = \dfrac{3}{{{\text{n}} - 2}}\]
Doing cross multiplication, we get,
\[ \Rightarrow 4({\text{n}} - {\text{2}}) = 3({\text{n}} - {\text{1}})\]
By solving we get,
\[ \Rightarrow 4{\text{n}} - 8 = 3{\text{n}} - 3\]
The value of ${\text{n}}$ is,
\[ \Rightarrow {\text{n}} = 5\]
Substitute the value of \[{\text{n}}\] in \[({\text{A}})\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{{5 - 1}}\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{4}\]
After solving we get,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
The value of \[{\text{a}}\] is,
\[ \Rightarrow {\text{a}} = \dfrac{3}{2}{\text{x}}\]
Substitute the value of \[{\text{a}} = \dfrac{3}{2}{\text{x}}\,{\text{and n}} = 5\] in the equation \[(1)\]
\[ \Rightarrow {5_{{{\text{C}}_1}}}{({\text{x}})^{5 - 1}}(\dfrac{3}{2}{\text{x}}) = 240\]
By solving we get,
\[ \Rightarrow 5{({\text{x}})^4}(\dfrac{3}{2}{\text{x}}) = 240\]
\[ \Rightarrow {{\text{x}}^5} = \dfrac{{240 \times 2}}{{5 \times 3}}\]
By cancelling the above we get,
\[ \Rightarrow {{\text{x}}^5} = 16 \times 2 = {2^5}\]
The value of \[{\text{x}}\] is,
\[ \Rightarrow {\text{x}} = 2\]
$\therefore $ The value of \[{\text{x,}}\,{\text{n and a}}\] is \[2,\,5\,{\text{and 3}}\] .
Hence, the values of \[{\text{x,}}\,{\text{n and a}}\] in \[{({\text{x}} + {\text{a}})^{\text{n}}}\]
binomial expression are \[2,\,5\,{\text{and 3}}\].
Note:
We can divide the equations in any order, we will be getting the same values. While substituting all the values in the binomial expression term formula one by one we will be getting the required terms. This is a small trick for rechecking.
By substituting all the terms in the binomial expression formula we will be getting three equations. By dividing the equations, we will be getting the next two equations. By equating the two equations we will be getting the one value. By substituting the one values in the equations we will be getting all the values.
Useful formula:
The formulae used in this question are,
The formula for binomial expression is,
\[{({\text{x}} + {\text{a}})^{\text{n}}} \Rightarrow {{\text{T}}_{{\text{r + 1}}}} = {{\text{n}}_{{{\text{C}}_{\text{r}}}}}{({\text{x}})^{{\text{n}} - {\text{r}}}}{({\text{a}})^{\text{r}}}\]
Where,
\[{\text{a}}\] be the first of the expression
\[{\text{r}}\] be the term number
\[{\text{n}}\] be the exponent on the binomial
The formula for \[{\text{n}}!\] is,
\[{\text{n}}! = {\text{n}} \times ({\text{n}} - 1)!\]
Where,
\[{\text{n}}\] be the required number
The formula for number of combinations is,
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = \dfrac{{{\text{n!}}}}{{{\text{r!(n}} - {\text{r)!}}}}\]
Where,
\[{\text{n}}\] be the number of objects in the expression
\[{\text{r}}\] be the number of choosing objects
Complete step by step solution:
The data given in the question are,
The second term in the above expression is \[240\]
The third term in the above expression is \[720\]
The fourth term in the above expression is \[1080\]
To find the value of \[{\text{x, a and n}}\]in the given \[{({\text{x}} + {\text{a}})^{\text{n}}}\] expression,
The second term in the above expression \[ = \]\[240\]
\[ \Rightarrow {{\text{T}}_2} = 240\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{1 + 1}}}} = 240\]
By seeing the above equation, we can say that \[{\text{r}} = 1\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_1}}}{({\text{x}})^{{\text{n}} - 1}}{({\text{a}})^1} = 240...............(1)\]
The third term in the above expression \[ = \] \[720\]
\[ \Rightarrow {{\text{T}}_3} = 720\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{2 + 1}}}} = 720\]
By seeing the above equation, we can say that \[{\text{r}} = 2\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_2}}}{({\text{x}})^{{\text{n}} - 2}}{({\text{a}})^2} = 720...............(2)\]
The fourth term in the above expression \[ = \] \[1080\]
\[ \Rightarrow {{\text{T}}_4} = 1080\]
The above can also be written as,
\[ \Rightarrow {{\text{T}}_{{\text{3 + 1}}}} = 1080\]
By seeing the above equation, we can say that \[{\text{r}} = 3\], and substituting in the formula we get,
\[ \Rightarrow {{\text{n}}_{{{\text{C}}_3}}}{({\text{x}})^{{\text{n}} - 3}}{({\text{a}})^3} = 1080...............(3)\]
By dividing $(2)\,{\text{and (1)}}$,
\[ \Rightarrow \dfrac{{{{\text{n}}_{{{\text{C}}_2}}}{{({\text{x}})}^{{\text{n}} - 2}}{{({\text{a}})}^2}}}{{{{\text{n}}_{{\text{C}}_1}}{{({\text{x}})}^{{\text{n}} - 1}}{{({\text{a}})}^1}}} = \dfrac{{720}}{{240}}\]
By using the combination formula, we can get,
\[ \Rightarrow \dfrac{{\dfrac{{{\text{n!}}}}{{2!({\text{n}} - {\text{2}})!}}\, \times {{({\text{x}})}^{{\text{n}} - 2 - ({\text{n - 1}})}} \times {\text{a}}}}{{\dfrac{{{\text{n!}}}}{{1!({\text{n}} - 1)!}}}} = 3\]
By simplifying we get,
\[ \Rightarrow \dfrac{{{\text{n!}}}}{{2({\text{n}} - {\text{2}})!}}\, \times \dfrac{{{\text{1!(n}} - 1){\text{!}}}}{{{\text{n}}!}} \times {({\text{x}})^{ - {\text{1}}}} \times {\text{a}} = 3\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{(n}} - 1)({\text{n}} - 2){\text{!}}}}{{{\text{2(n}} - 2)!}} \times \dfrac{{\text{a}}}{{\text{x}}} = 3\]
By cancelling we get,
\[ \Rightarrow \dfrac{{{\text{(n}} - 1)}}{{\text{2}}} \times \dfrac{{\text{a}}}{{\text{x}}} = 3\]
\[ \Rightarrow {\text{(n}} - 1) \times \dfrac{{\text{a}}}{{\text{x}}} = 6\]
By simplifying the above we get the below equation,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{{{\text{(n}} - 1)}}...............({\text{A}})\]
By dividing $(3)\,{\text{and (2)}}$,
\[ \Rightarrow \dfrac{{{{\text{n}}_{{\text{C}}_3}}{{({\text{x}})}^{{\text{n}} - 3}}{{({\text{a}})}^3}}}{{{{\text{n}}_{{\text{C}}_2}}{{({\text{x}})}^{{\text{n}} - 2}}{{({\text{a}})}^2}}} = \dfrac{{1080}}{{720}}\]
By using the combination formula, we can get,
\[ \Rightarrow \dfrac{{\dfrac{{{\text{n!}}}}{{3!({\text{n}} - 3)!}}\, \times {{({\text{x}})}^{{\text{n}} - 3 - ({\text{n}} - 2)}} \times {\text{a}}}}{{\dfrac{{{\text{n!}}}}{{2!({\text{n}} - 2)!}}}} = \dfrac{3}{2}\]
By simplifying we get,
\[ \Rightarrow \dfrac{{{\text{n!}}}}{{3!({\text{n}} - 3)!}}\, \times \dfrac{{{\text{2!(n}} - 2){\text{!}}}}{{{\text{n}}!}} \times {({\text{x}})^{ - {\text{1}}}} \times {\text{a}} = \dfrac{3}{2}\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{2!(n}} - 2)({\text{n}} - 3){\text{!}}}}{{{\text{3!(n}} - 3)!}} \times \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
By using ${\text{n!}}$ formula we get,
\[ \Rightarrow \dfrac{{{\text{2(n}} - 2)}}{{3 \times 2}} \times \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} \times \dfrac{{{\text{(n}} - 2)}}{3} = \dfrac{3}{2}\]
By simplifying the above we get the below equation,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{9}{{{\text{2(n}} - 2)}}...............({\text{B}})\]
By equating $({\text{A}})\,{\text{and (B)}}$,
\[ \Rightarrow \dfrac{6}{{{\text{n}} - 1}} = \dfrac{9}{{{\text{2(n}} - 2)}}\]
By cancelling we get,
\[ \Rightarrow \dfrac{2}{{{\text{n}} - 1}} = \dfrac{3}{{{\text{2(n}} - 2)}}\]
\[ \Rightarrow \dfrac{4}{{{\text{n}} - 1}} = \dfrac{3}{{{\text{n}} - 2}}\]
Doing cross multiplication, we get,
\[ \Rightarrow 4({\text{n}} - {\text{2}}) = 3({\text{n}} - {\text{1}})\]
By solving we get,
\[ \Rightarrow 4{\text{n}} - 8 = 3{\text{n}} - 3\]
The value of ${\text{n}}$ is,
\[ \Rightarrow {\text{n}} = 5\]
Substitute the value of \[{\text{n}}\] in \[({\text{A}})\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{{5 - 1}}\]
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{6}{4}\]
After solving we get,
\[ \Rightarrow \dfrac{{\text{a}}}{{\text{x}}} = \dfrac{3}{2}\]
The value of \[{\text{a}}\] is,
\[ \Rightarrow {\text{a}} = \dfrac{3}{2}{\text{x}}\]
Substitute the value of \[{\text{a}} = \dfrac{3}{2}{\text{x}}\,{\text{and n}} = 5\] in the equation \[(1)\]
\[ \Rightarrow {5_{{{\text{C}}_1}}}{({\text{x}})^{5 - 1}}(\dfrac{3}{2}{\text{x}}) = 240\]
By solving we get,
\[ \Rightarrow 5{({\text{x}})^4}(\dfrac{3}{2}{\text{x}}) = 240\]
\[ \Rightarrow {{\text{x}}^5} = \dfrac{{240 \times 2}}{{5 \times 3}}\]
By cancelling the above we get,
\[ \Rightarrow {{\text{x}}^5} = 16 \times 2 = {2^5}\]
The value of \[{\text{x}}\] is,
\[ \Rightarrow {\text{x}} = 2\]
$\therefore $ The value of \[{\text{x,}}\,{\text{n and a}}\] is \[2,\,5\,{\text{and 3}}\] .
Hence, the values of \[{\text{x,}}\,{\text{n and a}}\] in \[{({\text{x}} + {\text{a}})^{\text{n}}}\]
binomial expression are \[2,\,5\,{\text{and 3}}\].
Note:
We can divide the equations in any order, we will be getting the same values. While substituting all the values in the binomial expression term formula one by one we will be getting the required terms. This is a small trick for rechecking.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE