Answer
Verified
480.9k+ views
Hint: First of all, find the slant height of the cone and relation between radius and height of the cone by the given semi-vertical angle. Now, the approximate lateral surface area of the cone is given by \[S + \Delta S\] where \[S\] is the LSA of the cone. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let \[r\] be the radius, \[h\] be the height and \[l\] be the slant height of a cone of semi-vertical angle \[{45^\circ}\].
From the figure,
\[
\Rightarrow \tan {45^\circ} = \dfrac{r}{h} \\
\Rightarrow 1 = \dfrac{r}{h} \\
\therefore r = h \\
\]
We know that \[l = \sqrt {{r^2} + {h^2}} \].
So, slant height of the given cone is
\[
\Rightarrow l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow l = \sqrt {{h^2} + {h^2}} = \sqrt {2{h^2}} {\text{ }}\left[ {\because r = h} \right] \\
\therefore l = \sqrt 2 h \\
\]
Let \[h = 20\] and \[h + \Delta h = 20.0025\]
So, \[\Delta h = 20.025 - 20 = 0.025\]
We know that the lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
So, the lateral surface area of the given cone is
$\Rightarrow$ \[S = \pi h\sqrt 2 h = \sqrt 2 \pi {h^2}{\text{ }}\left[ {\because r = h{\text{ and }}l = \sqrt 2 h} \right]\]
The approximate lateral surface area of the cone is given by \[S + \Delta S\].
Now, consider \[\Delta S\]
\[
\Rightarrow \Delta S = {\left( {\dfrac{{ds}}{{dh}}} \right)_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {\dfrac{d}{{dh}}\left( {\sqrt 2 \pi {h^2}} \right)} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {2\sqrt 2 \pi h} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = \left[ {40\sqrt 2 \pi } \right] \times 0.025{\text{ }}\left[ {\because \Delta h = 0.025} \right] \\
\therefore \Delta S = \sqrt 2 \pi \\
\]
And
\[
\Rightarrow S = \sqrt 2 \pi {h^2} \\
\Rightarrow S = \sqrt 2 \pi {\left( {20} \right)^2}{\text{ }}\left[ {\because h = 20} \right] \\
\therefore S = 400\sqrt 2 \pi \\
\]
Hence the approximate value of lateral surface area of the cone is
\[S + \Delta S = 400\sqrt 2 \pi + \sqrt 2 \pi = 401\sqrt 2 \pi \]
Thus, the correct option is A. \[401\sqrt 2 \pi \]
Note: The semi-vertical angle of the cone is the angle between the height and slant height of the cone. The slant height of the cone of radius \[r\] and height \[h\] is given by \[l = \sqrt {{r^2} + {h^2}} \]. The lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
Complete step-by-step answer:
Let \[r\] be the radius, \[h\] be the height and \[l\] be the slant height of a cone of semi-vertical angle \[{45^\circ}\].
From the figure,
\[
\Rightarrow \tan {45^\circ} = \dfrac{r}{h} \\
\Rightarrow 1 = \dfrac{r}{h} \\
\therefore r = h \\
\]
We know that \[l = \sqrt {{r^2} + {h^2}} \].
So, slant height of the given cone is
\[
\Rightarrow l = \sqrt {{r^2} + {h^2}} \\
\Rightarrow l = \sqrt {{h^2} + {h^2}} = \sqrt {2{h^2}} {\text{ }}\left[ {\because r = h} \right] \\
\therefore l = \sqrt 2 h \\
\]
Let \[h = 20\] and \[h + \Delta h = 20.0025\]
So, \[\Delta h = 20.025 - 20 = 0.025\]
We know that the lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
So, the lateral surface area of the given cone is
$\Rightarrow$ \[S = \pi h\sqrt 2 h = \sqrt 2 \pi {h^2}{\text{ }}\left[ {\because r = h{\text{ and }}l = \sqrt 2 h} \right]\]
The approximate lateral surface area of the cone is given by \[S + \Delta S\].
Now, consider \[\Delta S\]
\[
\Rightarrow \Delta S = {\left( {\dfrac{{ds}}{{dh}}} \right)_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {\dfrac{d}{{dh}}\left( {\sqrt 2 \pi {h^2}} \right)} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = {\left[ {2\sqrt 2 \pi h} \right]_{h = 20}}\Delta h \\
\Rightarrow \Delta S = \left[ {40\sqrt 2 \pi } \right] \times 0.025{\text{ }}\left[ {\because \Delta h = 0.025} \right] \\
\therefore \Delta S = \sqrt 2 \pi \\
\]
And
\[
\Rightarrow S = \sqrt 2 \pi {h^2} \\
\Rightarrow S = \sqrt 2 \pi {\left( {20} \right)^2}{\text{ }}\left[ {\because h = 20} \right] \\
\therefore S = 400\sqrt 2 \pi \\
\]
Hence the approximate value of lateral surface area of the cone is
\[S + \Delta S = 400\sqrt 2 \pi + \sqrt 2 \pi = 401\sqrt 2 \pi \]
Thus, the correct option is A. \[401\sqrt 2 \pi \]
Note: The semi-vertical angle of the cone is the angle between the height and slant height of the cone. The slant height of the cone of radius \[r\] and height \[h\] is given by \[l = \sqrt {{r^2} + {h^2}} \]. The lateral surface area of the cone with radius \[r\] and slant height \[l\] is given by \[S = \pi rl\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE